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Abstract

Ordered response scales are ubiquitous in economics, but their interpretation rests
on an untested assumption: that numerical labels reflect equal psychological intervals.
The contribution of this paper is to provide a systematic assessment of this linearity
assumption, developing a general framework to quantify how easily empirical results
can be overturned when it is relaxed. Using original experimental data, we show that
respondents use survey scales in ways that deviate from linearity, but only mildly so.
Focusing on wellbeing research, we then replicate 40,000+ coefficient estimates across
more than 80 papers published in top economics journals. Coefficient signs are remark-
ably robust to the mild departures from linear scale-use we document experimentally.
However, estimates of relative effect sizes, which are crucial for policy applications, are
unreliable even under these modest non-linearities.
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1 Introduction

Ordered response scales, or ‘Likert scales’, are a standard instrument for measuring latent

constructs like political preferences, risk attitudes, wellbeing, trust, etc. These scales are

easy to administer and, for many disciplines, have proved pivotal for answering questions

that cannot otherwise be answered with behavioural data.

Yet scepticism over the validity and use of such Likert scale measures remains. Three

concerns underlie such scepticism. The first concern focuses on whether commonly used

survey items really do capture the underlying constructs of interest — such as attributes

of utility functions (e.g. risk aversion) or utility itself (e.g., ‘subjective wellbeing’). See,

for example, Bertrand and Mullainathan (2001) or Benjamin et al. (2023a). The second

concern asks whether responses are comparable across people and time: does a reported “6

out of 10” mean the same for you as for me, or for me today as for me a year ago? See e.g.

Angelini et al. (2014), Fabian (2022), Kaiser (2022), Benjamin et al. (2023b) or Prati and

Senik (2025). The third concern involves the relationship between the numerical labels that

researchers attach to ordered response categories (i.e., “1”, “2”, “3”, etc.) and how these

map onto the unobserved latent variable that researchers are trying to measure.

We focus on this third concern. The core issue is this: we do not know the functional form

of the relationship between reported scale values and the underlying latent variable. Even if all

respondents use the scale in approximately the same way, does a one-unit difference on the

response scale represent the same magnitude of change in the latent variable across all parts

of the scale? Or is this relationship non-linear, with differences between certain response

categories representing larger gaps in the underlying construct than others?

Although this issue applies to any construct measured with Likert scales, much of the

methodological work focused on wellbeing. This is unsurprising: Economists have stud-

ied wellbeing, life satisfaction, and happiness for over fifty years (e.g. Easterlin (1974) or

Van Praag (1971)). The modern study of wellbeing began in the 1990s, linking it to in-

come, unemployment and macroeconomic conditions (Clark and Oswald 1994; Oswald 1997;

Blanchflower and Oswald 2004). Today, wellbeing scales inform government policy, as seen

in the UK Treasury’s 2022 Green Book (UK HMRC Treasury 2021).

Within that literature, Ferrer-i Carbonell and Frijters (2004) were among the first to

address the linearity concern. They showed that coefficients estimated from an ordered

logit or probit models are similar to those based on OLS regressions. Nevertheless, Oswald

(2008) highlighted how a potentially non-linear “reporting function” (i.e. the mapping from

underlying states to survey responses) could distort estimates of non-linear effects, such as

estimates of the curvature of the income-to-wellbeing relationship. That paper also provided

some empirical evidence to suggest that the reporting function is close to linear.
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Focusing on coefficient signs, Schröder and Yitzhaki (2017) provided conditions under

which single-covariate regression results can be sign-reversed when allowing for a non-linear

reporting function. They also showed that such sign reversals can indeed occur in practice;

as did Bloem (2022) who broadened the analysis to a wider class of non-linear functions.

Bond and Lang (2019) generalised these ideas. They demonstrated that virtually all

empirical findings based on Likert scales can be reversed via some monotonic transformations

of the response scale. They argued that without strong assumptions about the distribution of

the latent concept within response categories and about the functional form of the reporting

function, it is impossible to draw definitive conclusions about the sign of differences between

groups.1 In turn, Kaiser and Vendrik (2023) identified effect heterogeneities across the

distribution of wellbeing as the underlying mechanism that drives potential sign reversals.

They derived a condition under which coefficients in OLS regressions with multiple covariates

are reversible and applied this condition to a selected set of covariates.2

However, we currently lack systematic evidence on how serious these concerns really are.

Existing studies have only analysed a small number of selected datasets and variables. Even

if results can be reversed in principle, we have no measure of how ‘easy’ it is to obtain such

reversals, and thus how concerned we should be in practice. We also have surprisingly little

direct evidence on how respondents actually interpret survey scales. This makes it difficult

to assess which transformations are empirically plausible. Finally, while much attention

has focused on coefficient signs, we know little about how non-linear transformations affect

statistical significance or the relative magnitudes of estimates.

We address these gaps. To do so, we first introduce a cost function C to quantify the

extent to which any scale transformation departs from linearity. This cost function has a

natural interpretation, with C = 0 indicating linear scale use, and C = 1 indicating (in

a certain sense) ‘maximally’ non-linear scale use. We formally show that our specific cost

function is a member of a broader class of measures that satisfy a series of natural desiderata.

Using this cost function we can numerically determine the ‘least non-linear’ transformation

capable of reversing regression results in terms of sign, significance, and relative magnitudes.

From a partial identification perspective (e.g. Tamer 2010; Molinari 2020), this approach

can be viewed as providing bounds to what would otherwise be impractically wide identified

1Liu and Netzer (2023) propose using survey response times to overcome the identification problem raised
by Bond and Lang (2019). Their approach exploits chronometric effects: decisions tend to be faster when
the latent state is further from the reporting threshold. They show, both theoretically and empirically, that
response times thereby contain information about the distribution of the latent variable within categories,
thereby relaxing the assumptions needed in standard ordered response models.

2These papers all focus on how a potentially non-linear reporting function may affect estimates of the
conditional mean of underlying wellbeing. Rankings of the conditional median, in contrast, are invariant to
such non-linear transformations (Chen et al. 2022; Bloem and Oswald 2022).
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parameter sets when treating response scales as merely ordinal. The corresponding statistical

machinery is general and applies to any bounded ordered scale. We provide corresponding

Stata routines on Github.

Using new experimental data, we subsequently offer novel empirical evidence on how

non-linear respondents’ scale use is in practice. We then reproduce the quasi-universe of

wellbeing literature published in top-tier economics journals over the past fifteen years,

creating an extensive database we call WellBase. In that section, we reproduce 73 papers,

1,610 regressions, with 3,430 coefficients of interest (and 28,522 coefficients overall). Using

this dataset, we systematically assess the vulnerability of the published literature.

Our results show that respondents, on average, interpret and use wellbeing scales in a

manner that does deviate from linearity, but only mildly so. Our upper bound estimate of this

deviation serves as a benchmark for what we call plausible scale use. The relationship between

the ‘cost’ of deviating from linearity and the risk of sign reversal is concave. Approximately

20% of results published in leading economic journals are reversed with some transformation

that has a plausible cost. Restricting ourselves to interpreting wellbeing data as merely

ordinal (i.e. allowing for any departure from linear scale use), increases this share to about

60%. The probability that a given estimate can be sign-reversed is systematically related

to identifiable features of research design. Certain design choices, like leveraging natural

experiments, are associated with substantially lower risks. Estimates with higher significance

levels are much less prone to reversals under plausible transformations.

We also examine risks of ‘significance reversals’. Estimates originally significant at the

0.1% level prove highly robust: roughly 94% remain significant at the 5% level even under a

purely ordinal interpretation. However, estimates with p-values between 0.01 and 0.05 are

highly vulnerable even under plausible transformations. The potential for non-linear scale

use therefore makes reliable statistical inference considerably more challenging. Turning to

relative magnitudes, we focus on unemployment and income. While coefficient signs for

these determinants are fairly robust, their relative magnitudes are highly sensitive to scale

use assumptions: Marginal rates of substitution between unemployment and income can

vary by an order of magnitude under plausible deviations from linearity.

Our findings generalise beyond wellbeing scales. To show this, we reproduce 16 papers

(23,104 coefficients) published in top-five economics journal. Each of these use Likert-scales

to measure e.g. risk aversion, social trust, or political preferences. The prevalence and

predictors of sign reversals for these measures closely mirror our wellbeing results.

The next section will provide the methodological background and introduces our cost-

function approach. Section 3 empirically assesses respondents’ scale interpretations. Section

4 describes WellBase and presents our results based on it. Section 5 concludes. The ap-
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pendices provide proofs, additional discussion, and further results. Replication codes are

available here.

2 Analytical approach

This section provides the theoretical framework for our empirical analyses. We first note con-

ditions under which regression coefficients maintain their sign across all monotonic transfor-

mations of the response scale and discuss how ratios of coefficients can be bounded. Versions

of Propositions 1-3 previously appeared in the working paper of Kaiser and Vendrik (2023).

We here state them in our notation and provide several extensions and corrections. We

then introduce a cost function to quantify departures from a linear response scale. This en-

ables us to determine the minimal non-linearity required to reverse signs, change statistical

significance, or alter relative magnitudes of coefficients.

Throughout, we primarily focus on the behaviour of OLS estimators under monotonic

transformations of the response scale.3 This is because our systematic replication exercise

in Section 4 shows that the published economics literature overwhelmingly applies OLS to

such scales. The central question, thus, is how robust this practice is.

2.1 Set-up and intuition

Consider a dataset containing responses to a survey question. For each individual i, responses

are recorded using ordered categories: ri ∈ {1, 2, ..., k, ..., K}. We also observe a vector of

covariates Xi.

These responses measure an underlying but unobservable state si.
4 Suppose that higher

values of ri correspond to higher levels of si. However, the functional relationship between ri

and si is otherwise unknown. This uncertainty motivates our analysis. We could transform

ri using any positive monotonic function f to obtain r̃i = f(ri). Different transformations

yield different interpretations of the response scale. The identity function f(r) = r treats

the scale as cardinal. Non-linear transformations alter the assumed ‘distances’ between

response categories. Following Oswald (2008), we can interpret f as the inverse of a ‘reporting

function’ that maps underlying states to survey responses.

We are concerned with estimates from OLS regressions of r̃i on Xi:

r̃i = Xiβ̂
(r̃)

+ ei, (1)

3It might instead be natural to analyse ordered response scales through threshold-crossing models (Klein
and Sherman 2002). However, as shown by Bond and Lang (2019), very similar concerns apply to ordered
probit/logit models.

4For example, for a question about happiness, that underlying state would be the level of happiness the
respondent is experiencing. In a question about trust, this state would be the subjectively ‘felt’ level of trust.
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where ei denotes the residuals. We use superscripts to distinguish coefficients from different

transformations: β̂
(r̃)
m denotes the coefficient on Xim from regressing r̃i, while β̂

(r)
m denotes

the coefficient from the standard cardinal specification.

We are interested in the stability of these coefficients across possible transformations f .

A purely ordinal interpretation permits all positive monotonic transformations and deems

them as equally viable. As we will show, in some instances, coefficient signs can be deter-

mined and relative magnitudes can be bounded even under this purely ordinal interpretation.

However, in many instances, only little can be said under a purely ordinal interpretation. We

therefore introduce a cost function C that quantifies how non-linear a given transformation

of the response scale is. This function takes values between 0 (linear transformation) and 1

(maximally non-linear transformation). It thereby allows us to take an intermediate position

between purely cardinal and purely ordinal interpretations of survey response data.

2.2 Sign reversals

If the sign of β̂
(r̃)
m does not change under any positive monotonic transformation of the depen-

dent variable ri, then how we would code survey responses would not affect our estimates

of the sign of their association with Xim. Define a new variable dki ≡ 1(ri ≤ k) that

dichotomises ri at every response category. The following proposition then holds:

Proposition 1 (Non-reversal condition). The sign of β̂
(r̃)
m is invariant under all positive

monotonic transformations of ri if and only if the estimates β̂
(d)
km on Xim from OLS regressions

of dki on Xi share the same sign for all k = 1, ..., K − 1.

The proof in our notation appears in Appendix A.1. This condition can be read as

establishing whether first-order stochastic dominance of ri with respect to some variable Xi

holds. As we show in Appendix C.1 this result extends to continuous outcomes, fixed effects,

and two-stage least squares (2SLS) estimation.

Intuitively, this proposition shows that sign reversals require heterogeneities in the as-

sociation of a covariate across the distribution of observed responses. An association is

‘heterogeneous’ in this sense when the signs of β̂
(d)
km are positive at some dichotomisations,

but negative at others. In this case, variation in variable Xim pushes respondents up at some

parts of the scale while pushing them down at others. Monotonic transformations can arbi-

trarily stretch or compress different parts of the scale to emphasize these opposing effects.

Effectively, this allows us to ‘choose’ the sign of the average association.

Proposition 1 is merely a statement about the behaviour of OLS regression coefficients.

To connect estimates β̂
(r̃)
m from regressions of r̃i to underlying states si, we must make two

assumptions: One assumption about the relationship between si and Xi and one assumption
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on the relationship between r̃i and si. Regarding the former, we assume a linear relationship

between the underlying state and covariates:

Assumption 1 (Linear model). The underlying state si is linear in Xi: si = Xiβ+ εi with

E(εiXi) = 0.

This is assumption is not special to survey-based research and follows Angrist and Pischke

(2009). We will not focus on it. Regarding the latter, we require that the measurement error

from using a discrete response scale is reasonably well-behaved:

Assumption 2 (Favourable within-category heterogeneity). For some f(ri) = r̃i, we have

si = r̃i+ ζi, where ζi = Xiγ+ϑi with E(ϑiXi) = 0. For coefficient γm corresponding to Xim,

either sgn(βm) ̸= sgn(γm) or sgn(βm) = sgn(γm) and |βm| > |γm|.

We can think of ζi as a measurement error associated with discretising continuous si

to the discrete levels of r̃i. The reason why we label Assumption 2 “favourable within-

category heterogeneity” is because the coefficients on the measurement error ζi indicate how

the underlying state varies across individuals within response categories. Substantively, we

require that this within-category variation is either weaker than the corresponding variation

across categories, or of the same direction as across categories.5 Section 3.3 and Appendix

E provide empirical support for this assumption. With these assumptions in place, we can

now state the following:

Proposition 2 (Non-reversal for underlying satisfaction). Under Assumptions 1 and 2, when

the condition of Proposition 1 holds, the sign of β̂
(r̃)
m from any transformation r̃i consistently

estimates the sign of βm.

See Appendix A.2 for the proof. Proposition 2 tells us that the sign of the association

of some variable Xmi with underlying satisfaction si can be identified with data on ri when-

ever the measurement error due to discretising si is sufficiently well-behaved. If we do not

maintain Assumption 2, i.e. when we are unwilling to place suitable restrictions on within-

category heterogeneity in si, then estimates based on observed data on ri and Xi can almost

always fail to yield the correct sign for the direction in which si varies with Xi. Although

not framed in those terms, this was previously pointed out by Bond and Lang (2019).

5To gain some intuition on this, consider a binary treatment Xim ∈ {0, 1} where the true average treat-
ment effect on the underlying state si is negative (i.e. βm < 0). Suppose that the treatment nevertheless
contains two opposing effects: (1) it increases si for a few individuals such that they are shifted to a higher
response category ri, while (2) also lowering the underlying state si of most individuals within each category
(who do not switch categories). In this case, the within-category measurement error ζi would be negatively
correlated with the treatment (i.e. γm < 0), while the regression of ri on Xim will show a positive association

due to the positive between-category effect (i.e. β̂m > 0). Since both βm and γm are negative, Assumption

2 is violated. Here, the estimate β̂m (which is only based on between-category variation) would incorrectly
indicate a positive treatment effect even though the true effect is negative.
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2.3 Coefficient ratios

Beyond coefficient signs, researchers often focus on the ratios β̂
(r̃)
m /β̂

(r̃)
n of estimated co-

efficients corresponding to different covariates. Such ratios are frequently interpreted as

marginal rates of substitution and are central to policy applications that derive monetary

valuations from survey data (Frijters and Krekel 2021). Generally, the absolute magnitudes

of coefficients are meaningless. they can be freely changed by an arbitrary linear transforma-

tion of the response scale. Ratios of coefficients, in contrast, in virtue of being unaffected by

linear transformations of the response scale, do provide a meaningful measure of the relative

size of a variable’s association with the the outcome of interest.

However, such ratios are affected by non-linear transformations. The only exception

occurs when the corresponding ratios β̂
(d)
km/β̂

(d)
kn from regressions of dichotomised variables dki

are constant across all k. Empirically, this is never the case. Yet, whenever the coefficient

in the denominator is not reversible, we can establish bounds on this ratio:

Proposition 3 (Bounded coefficient ratios). If and only if β̂
(r̃)
n in the denominator is not

reversible across all positive monotonic transformations of ri, the ratio β̂
(r̃)
m /β̂

(r̃)
n is bounded

by the minimum and maximum values of β̂
(d)
km/β̂

(d)
kn across all k = 1, . . . , K − 1.

See Appendix A.3 for the proof. Unfortunately, these bounds tend to be impractically

wide (c.f. section 4.2.4). This, in part, motivates the material of the next section.

2.4 Quantifying non-linear scale use

Thus far, we were concerned with the behaviour of coefficient estimates when treating any

transformation f(r) = r̃ of r as an equally viable interpretation of the response scale. How-

ever, while some degree of non-linearity in response scales seems plausible, extreme trans-

formations strain credulity. Consider a transformation that compresses categories 1-10 into

a tiny interval while stretching category 11 across most of the scale. Such a transformation

represents at best an unusual assumption about how people use survey scales. We thus need

a principled way to quantify how ‘extreme’ a transformation is — that is, how far it departs

from the standard assumption of linearity. We can then identify the minimal departure from

linearity needed to overturn empirical results.

There are several desiderata that any measure of departure from linear scale-use should

possess. First, it should be minimised when gaps between categories are uniform (implying

linear scale use) and maximised when all the scale’s range is concentrated in a single jump

between two categories. Second, greater dispersion in gap sizes should generally increase

the value of the measure, i.e. increasingly unequal gaps should correspond to greater de-

partures from linearity. Third, the measure should treat all positions on the scale equally.
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A (say) compression between categories 2-3 should be just as ‘costly’ as the same compres-

sion between categories 8-9. In Appendix B we formalize these desiderata and derive a

representation theorem characterising the class of functions satisfying them.

Let lk denote the (real) value assigned to response category k in the original coding

of ri, with lk = k in the standard rank-order coding. Similarly, let l̃k denote the value

assigned to category k in some transformed coding r̃i = f(ri), where f(lk) = l̃k. Finally, let

∆l̃ ≡ [l̃2 − l̃1, l̃3 − l̃2, ..., l̃K − l̃K−1] capture these differences.

With this notation in place, we will now focus on a particular member of the class of

functions we characterise in Appendix B. Specifically, we consider:

Cα(̃l) =

(
Var(∆l̃)

maxVar(∆l̃)

)1/α

,

where Var(∆l̃) denotes the variance of the differences in labels, while maxVar(∆l̃) rep-

resents the maximum possible variance of these differences. In Appendix A.5, we show that

maxVar(∆l̃) = K−2
(K−1)2

(lK − l1)
2.

Any α > 0 yields a valid cost function that is bounded between 0 and 1, with 0 rep-

resenting perfect linearity and 1 representing maximal non-linearity (i.e., a single jump).6

Generally, smaller values for α make the cost function more lenient, allowing for stronger

non-linearities at lower cost values. In Appendix B.4 we show that setting α = 2 renders our

cost function linearly homogeneous. Specifically, if we take some non-linear scale use charac-

terised by ∆l̃ and ‘mix’ it with linear scale use u = [(lK − l1)/(K − 1), ..., (lK − l1)/(K − 1)]

with weight λ to obtain ∆l̃(λ) = λ∆l̃ + (1 − λ)u, we get C(∆l̃(λ)) = λ · C(∆l̃). This prop-

erty yields a natural interpretation: a transformation with C = 0.1 is, in this sense, ‘10%

non-linear’. We therefore use α = 2 in the empirical sections and drop the α subscript.7

We use this cost function to quantify the robustness of empirical findings. The gen-

eral approach is to find transformations that minimize Cα subject to a set of appropriate

constraints. Two constraints for this optimisation problem are shared across all applications:

1. Normalisation: The ‘length’ of the scale must be preserved: lK − l1 = l̃K − l̃1.

2. Monotonicity: Transformed labels must be strictly increasing: l̃k− l̃k−1 > 0∀k ≥ 2.

6The normalised Theil Index is another member of the class of functions we characterise. Appendix
Figure A9 shows results based on that index.

7However, when the number of categories becomes large (e.g., 100 categories when approximating a
continuous scale), a fixed value for α becomes problematic. In such cases, it is possible to achieve visually
strong non-linearities even for small values of C. In Appendix D we show that this occurs because, as the
number of response options K increases, the variance of differences between adjacent labels scales by a factor

1
(K−1)2 for any fixed (smooth) transformation function. To render the extent of non-linearity comparable

across scales with vastly varying numbers of response options, we there propose setting α = 2 log10(K − 1).
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Figure 1: Examples of scale transformations with different costs Cα=2.

Notes: The figure shows different ways how respondents might interpret response scales. Specifically,
each panel shows several randomly selected ways to transform an 11-point response scale. Within each
panel, the displayed transformations all satisfy a given cost Cα=2 displayed at the top of each panel. The
horizontal axis represents the original scale r. The vertical axis shows the transformed scale f(r) = r̃.
The straight 45-degree line in each panel represents linear scale use, i.e. the standard assumption that the
difference between choosing “3” versus “4” means the same as choosing “7” versus “8”. As our cost Cα=2

increases from 0 to 1, transformations increasingly depart from this linear benchmark. At the extreme of
Cα=2 = 1, the scale collapses to a single jump. Here, all response options below some threshold represent
the same mean level of the underlying state, while all above represent another level.

Here, the Normalisation constraint ensures that transformations preserve the overall

range of the scale.8 This prevents arbitrary stretching or compression that would make

comparisons meaningless. TheMonotonicity constraint forces that only positive monotonic

transformations are considered. We thereby ensure that higher response categories always

map to higher transformed values.

We then need a third constraint that depends on our application. For example, if we are

interested in reversing coefficient signs, we need the sign of β̂
(r̃)
m to be different from β̂

(r)
m :

3a. Sign Reversal: sgn
(
β̂
(r̃)
m

)
̸= sgn

(
β̂
(r)
m

)
.

On the other hand, for coefficient ratios, we should constrain ourselves to achieving some

target ratio within the bounds identified by Proposition 3:

8Some papers study potential stretching of the scale across respondents while maintaining the linearity
assumption. See e.g. Benjamin et al. (2023b) or Fabian (2022). A fruitful avenue for future work is to
combine these research streams.
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3b. Fixed Ratio: β̂
(r̃)
m /β̂

(r̃)
n = ρ for some target ratio ρ.

For statistical inference, our constraint would require the p-value p(β̂
(r̃)
m ) to cross a chosen

significance level. This is outlined in the next section. For any application, we then find:

l̃∗ = argminl̃Cα(̃l), (2)

subject to the relevant constraints. In general, there may not be a unique solution to this op-

timisation problem. However, for any solution, Cα(̃l
∗) quantifies the minimal departure from

linearity required to achieve the specified objective; be that a sign reversal, a ‘significance’

reversal, or achieving a given relative effect magnitude.

2.5 Statistical inference

To assess how significance levels change under monotonic transformations, we need the

variance-covariance matrix of β̂
(r̃)

from regressions of any transformed variable r̃i. The

variance-covariance matrix takes the standard form:

Var(β̂
(r̃)
) = (X′X)−1X′Ω̂X(X′X)−1,

where Ω̂ is an estimate of the covariance matrix of the residuals. The form of Ω̂ depends

on the assumed error structure, but in all cases it depends only on the residuals ẽ and

(for clustered errors) the design matrix X. Usefully, the residuals from a regression of any

r̃i on Xi can be expressed as a weighted combination of residuals from the corresponding

dichotomised regressions of dki. As shown in Appendix A.4 we have:

ẽ =
K−1∑
k=1

(l̃k − l̃k+1)edk,

where edk denotes the vector of residuals from regressing dk on X.

This decomposition allows us to compute Ω̂ for any transformation using only results

from the K − 1 dichotomised regressions of dki. Appendix A.4 provides explicit expressions

for homoskedastic, heteroskedasticity-robust, and clustered standard errors in terms of these

weighted residuals. Once we have the variance-covariance matrix, expressions for standard

errors and p-values for any coefficient under any transformation follow immediately.

We can now make use of the cost function framework of the previous section. First, we

can obtain bounds on p-values p(β̂
(r̃)
m ) associated with any coefficient β̂

(r̃)
m for any positive

monotonic transformation of r.9 We can do so by numerically maximising (for an upper

9Note here that is not the case that the p-value p(β̂
(r̃)
m ) associated with some estimated coefficient β̂

(r̃)
m is
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bound) or numerically minimising (for a lower bound) p(β̂
(r̃)
m ) subject to constraints (1)-(2)

of the previous section. With such bounds in hand, it is possible to specify some fixed p-value

as a constraint on the optimisation problem we previously specified:

3c. Fixed P-value: p(β̂
(r̃)
m ) = π.

We then numerically solve the optimisation problem of Equation 2 subject to constraints

(1)-(3c). By choosing π appropriately (e.g. π = 0.05), this allows us to asses how non-linear

we require transformations of ri to be in order to turn a statistically significant result into a

statistically insignificant one, and vice versa.

3 How are response options interpreted?

The previous section was based on the idea that more extreme departures from a linear

interpretation of the response scale are increasingly unlikely. The case of C = 1, where there

is only a single ‘jump’ in the underlying state for some two adjacent response categories,

and no differences in the underlying state for all other response categories, is an example of

a clearly unnatural interpretation of the response options.

There is little direct evidence on how respondents use survey response options. Existing

work is mostly indirect. Psychophysics studies on how people interpret numbers suggest

that, for bounded intervals analogous to survey scales, subjective and objective values are

roughly linear (Banks and Coleman 1981; Banks and Hill 1974; Schneider et al. 1974). Earlier

contributions in economics also point to near-linearity in scale use (Van Praag and Van der

Sar 1988; Van Praag 1991; Van Praag et al. 1999). More recently, Kaiser and Oswald

(2022) show that reported satisfaction in domains such as jobs, housing, and health predicts

subsequent quitting actions in a near-linear fashion.

None of the previous studies provide a clear upper bound for our cost C. In the material

below, we therefore attempt to find an upper bound for C.

3.1 Data and approach

We rely on data collected from a sample of N = 1, 268 participants recruited via Prolific.

We sought for this sample to be nationally representative of the adult population of the UK.

See Appendix Table A4 for further details on data collection and Appendix Table A5 for

descriptive statistics. We implement four different methods to estimate C. Given that our

primary interest in our replication effort of Section 4 is on ‘life satisfaction’, our attempts

at bounding C also tend to be specific to life satisfaction. As will become apparent, these

bounded by the smallest and largest p-values obtained from corresponding regressions of dki. For example,

when β̂m is reversible, we can find some transformation where p(β̂
(r̃)
m ) = 1 despite p(β̂

(d)
km) < 1 ∀ k.
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methods disagree in their substantive conclusions about the particular shape of respondents’

scale use. But they do agree on the likely extent to which scale use is non-linear.

3.1.1 Linear prompting

For our first method, we randomised participants into two conditions. One half of partici-

pants is given a standard life satisfaction question: ‘Overall, how satisfied are you with your

life nowadays? ’.10 The other half received the same question, but we added the following

prompt: ‘Please treat the scale below as linear. For example, the difference in satisfaction

between options “4” and “5” should be treated as just as large as the difference between op-

tions “6” and “7”.’. Thus, in the second group, we directly ask respondents to use the

scale in a linear fashion. In both conditions, after respondents gave their discrete answer,

they were also asked about their satisfaction level within the chosen category. We therefore

obtain both a discrete and continuous measurement of r. Our full survey, showing how these

questions were presented to respondents, is available here.

To make an inference about deviations from linear scale use in the unprompted case,

we need two assumptions. We state these informally. First, we assume that respon-

dents adhere to our linearity prompt. Second, given randomisation, we assume that the

distribution of underlying satisfaction is the same across both groups. For every value

r
(disc)
un ∈ {0, 1, ..., k, ..., K} of the unprompted discrete satisfaction data, we find the value

r
∗(cont)
lin from continuous data in the linearly prompted group which satisfies Fun(r

(disc)
un =

k) = Flin(r
∗(cont)
lin ). Here, Fun and Flin respectively denote the cumulative distribution func-

tions of r
(disc)
un and r

(cont)
lin . If scale use was unaffected by the prompt – i.e. if respondents were

using the scale in a linear fashion without being prompted to do so – then we should observe

a linear relationship between r
(disc)
un and r

∗(cont)
lin . Deviations from such a linear relationship,

in turn, are indicative of non-linear scale use.

3.1.2 Objective-subjective questions

Our second and third methods replicate and extend a method first proposed by Oswald

(2008). Towards the start of the survey, we ask respondents to subjectively rate both their

height and weight on a scale from 0 to 10. Specifically, we ask ‘How tall are you?’ (‘How

heavy are you? ’), with extremes labelled as 0=‘Extremely short (light)’ and 10=‘Extremely

tall (heavy)’. These scales are made to look identical to the scales for our life satisfaction

question (see link). Towards the end of the survey – after all subjective questions are

answered – we then ask respondents about their actual ‘objective’ height (in feet and inches)

and weight (in stone). Using these data, we can in turn compute the mean objective height

and weight within each response category. We can then read off in how far, expressed in

10This follows the phrasing used by the UK’s Office of National Statistics in the Annual Population Survey.
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terms of our cost C, respondents’ average scale use deviated from linearity.

3.1.3 Interactive sliders

For our fourth method we interactively ask respondents how they interpreted the scale (this

sample is restricted to respondents that were not ‘prompted’ in Section 3.1.1 – see this link

for an interactive demo). We first explain to respondents that scale use might be non-linear.

Then, as a comprehension check, we ask respondents to graphically indicate, using a set of

interactive sliders, a pre-specified type of non-linear scale use (specifically a case in which

the difference between a ‘3’ and a ‘4’ is larger than the difference between a ‘7’ and an

‘8’). We only proceed with respondents who pass this check (82%). In the final step, we

ask respondents to indicate their own scale use with the same set of interactive sliders. We

provide respondents with several presets (incl. concave, convex, logistic, and inverse logistic

scale use). When respondents do not move the sliders (implying linear scale use), we ask

respondents to verify that they really did mean to indicate that their scale use was linear.

3.2 Results on scale use

Results are displayed in Figure 2. In each panel, the horizontal axis represents the unadjusted

data – either on life satisfaction (Panels (A) and (D)), or on subjective height (Panel (B))

or weight (Panel (C)). In Panel (A), the vertical axis gives r
∗(cont)
lin for each level of r

(disc)
un .

For Panels (B) and (C) the vertical axis respectively denotes objective height (converted to

cm) and weight (converted to kg). The vertical axis in Panel (D) shows the position of the

slider for each response category of r
(disc)
un .

Across all methods we observe deviations from linearity. We use bootstrapping with 500

replications to obtain confidence intervals. The linear prompting approach gives evidence to

imply that lower response categories – i.e between 0 and 4 – cover a slightly wider satisfaction

range than the subsequent categories. Here, we obtain C = 0.105 (95% CI: 0.078−0.153). In

the height approach, categories 3 and 4 cover a relatively smaller range, while categories 8-10

cover a wider range. This yields C = 0.111 (95% CI: 0.102 − 0.178). The weight approach

yields broadly similar, though more pronounced, results (C = 0.151; 95% CI: 0.115−0.229).

Finally, the sliders approach yields a substantial share of individuals who state that their

scale use is linear (42%). Among the remaining 58%, some selected the concave (11% of

total), convex (9% of total) or other presets (9% of total). About a third of respondents

(30% of total) were not using any of the pre-set options. Taking the average C across

respondents, we obtain C = 0.105 (95% CI: 0.095− 0.115).

Hence, across methods, our point estimates for C range between 0.105 (sliders and linear

prompting) and 0.151 (weight). All estimates differ statistically significantly from zero at any

conventional level (with p < 0.01). However, these approaches yield inconsistent results
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Figure 2: How do people use response scales? Converging evidence of mild departures from
linear scalue use across methods.

Notes: Four different approaches to measuring non-linear scale use all point to similar conclusions. Panel
(A) is based on a randomised experiment: the first half of our sample answered a standard satisfaction
question, while the second half received explicit instructions to treat the scale linearly. The solid line
shows how we would need to adjust response labels in the first group to match the distribution of the
second group. In Panel (B) we first asked respondents to subjectively rate their height (0=“extremely
short” to 10=“extremely tall”) and then asked for their actual ‘objective’ height. The graph displays the
average objective height within each subjective category. Panel (C) repeats this exercise for weight. In
Panel (D) respondents were given interactive sliders and asked to indicate how they personally interpret
the gaps between satisfaction scale points. Each gray line represents one respondent’s interpretation.
Across all four methods, we find that people interpret scales in ways that deviate from perfect linearity,
but only mildly so. The ‘cost’ C, which quantifies departure from linearity (where 0=perfectly linear and
1=maximally non-linear), ranges from 0.105 to 0.151 across methods. Based on a nationally representative
sample of N≈1,200 UK residents recruited via Prolific.

regarding how individuals interpret the relative differences between response options: The

solid lines in each panel have markedly different shapes, indicating disagreement about the

specific form of non-linearity. This disagreement reflects both methodological differences

(height and weight questions measure different constructs than life satisfaction) and the

inherent difficulty of eliciting subjective scale interpretations. Yet, despite this disagreement

about shape, we do obtain convergent evidence to suggest that the extent of non-linearity in

scale use is, at most, modest. No method suggests departures from linearity anywhere near

the more extreme transformations shown in the bottom panels of Figure 1. For strongly non-

linear scale use (say, C > 0.3) to be viable, all four of our quite different approaches would

need to be systematically biased toward linearity. While we cannot rule this out entirely, it

seems unlikely that diverse methods would all err in the same direction. On this basis, we

conclude that reporting functions substantially more non-linear than allowed by C = 0.3 –
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twice our maximum observed estimate – are unlikely.

This upper bound provides an empirical anchor for labelling scale transformations in

the analyses that follow. We will call transformations with 0 ≤ C < 0.15 “plausible” or

“mild”. Transformations with 0.15 ≤ C < 0.30 will be called “conservatively-plausible”.

Transformations with 0.30 ≤ C ≤ 1.00 will be labelled “implausible” or “unlikely”. These

names are, of course, tentative, and should be revised against future evidence.

3.3 How does satisfaction vary within response options?

The robustness of the empirical literature – to be assessed in Section 4 – depends both on

plausible values for C and on whether Assumption 2 is met. This assumption is concerned

with potential complications arising from discretising the response scale, rather than with

uncertainty over the choice of f and over what cost C is permissible. Here, we take both

continuous and discrete measurements and compare results. This allows to assess whether

discretising poses any special problem. We obtain the required data by first asking respon-

dents about their discrete satisfaction, and then asking a follow-up question about their

satisfaction level within the chosen category.

With this data, we evaluate what γm (which is key to Assumption 2) would be for each

covariate m if scale use were linear. We rely on the following argument: The coefficient γm

is intended to capture systematic within-category heterogeneity in underlying satisfaction.11

When satisfaction is measured on an increasingly granular scale, there is minimal scope for

such heterogeneity to emerge. This implies that γm should approach zero. Therefore, when

we assume that scale use is linear, we may consider a (quasi-)continuous measurement of

satisfaction rconti to be a proxy for underlying satisfaction, i.e., rconti ≈ si. On this basis, we

estimate two regressions: one using discrete rdisci and another using continuous rconti . The

difference in estimated coefficients, β̂contm − β̂discm , gives us an estimate of γm.
12

Figure 3 presents our results. The figure shows estimates β̂contm , β̂discm , and γ̂m for a set

of standard socio-economic characteristics. In all cases, γ̂m is close to zero and statistically

insignificant (at the 5% level). For most variables, γ̂m takes the same sign as β̂contm , causing

the estimate of βdiscm to be biased towards zero. The only case in which γ̂m takes on a different

sign than β̂contm (which is necessary but not a sufficient condition for violating Assumption

2) occurs for unemployment and having children. For none of the variables in this analysis

11In Assumption 2, ζi = Xiγ + ϑi represents the measurement error associated with discretising contin-
uous satisfaction. While other sources of measurement error may exist (e.g., misunderstanding questions,
momentary distractions), we assume these are uncorrelated with our covariates Xim, and therefore do not
systematically bias our coefficient estimates beyond the discretisation error we explicitly model.

12To see this more formally, note that since we assume rconti ≈ si for C = 0, we have rconti = Xiβ + εi.
For the discrete measure, we have rdisci = Xi(β − γ) + εi − ϑi. Thus, the difference in coefficients between
the continuous and discrete regressions yields βcont

m − βdisc
m = γm.
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Figure 3: Discrete and continuous measures of satisfaction yield nearly identical estimates.

Notes: Comparison of regression coefficients using either a continuous (black dots) or a discrete (blue
dots) 11-point measure of satisfaction. The differences between these estimates (γm; teal dots), represent
measurement errors from discretisation. Whiskers indicate 95% confidence intervals. Across all covari-
ates, the γm estimates are close to zero and statistically insignificant. It makes little difference whether
satisfaction is measured on a continuous or a discrete scale. This provides empirical support for Assump-
tion 2. The coefficient patterns themselves align with the wider literature: satisfaction follows a U-shape
with age, unemployment strongly reduces satisfaction, higher household income increases it, and having
a partner is beneficial. Women report slightly higher satisfaction than men.

does Assumption 2 look to be violated. This is evidence in favour of Assumption 2.

We replicated Figure 3 using three alternative datasets. In each of these datasets, we

again observe a continuous and a discrete measurement of either respondents’ satisfaction or

happiness. Additional details and descriptive statistics are given in Appendix Tables A4 and

A6. The main methodological difference in these compared to our own data is that answers

to the continuous and the discrete question were given at different times in the survey.

Thus, respondents were not forced to give their continuous answer as being located within

a given discrete category. Results are shown in Appendix Figure A4. In almost all cases,

γm is statistically insignificant and of the same sign as βdiscm – implying that Assumption

2 is satisfied. Across 42 coefficients in total, we only observe evidence for violations of

Assumption 2 twice: once for an ‘education’ dummy and once for a gender dummy. Overall,

this is thus further evidence in support of Assumption 2.

Finally, although our evidence suggests γm ≈ 0 if scale use were linear (i.e., for C = 0),

it remains unclear how γm would behave for for non-linear scale use (i.e. C > 0). Given
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the evidence of Section 3, we are especially interested in the case of 0 < C < 0.15. It is

not feasible to estimate γ for all possible transformations f that satisfy C < 0.15 (recall

that any specific value of C picks out a family of transformations, and not one particular

transformation). However, it is possible to perform a worst-case analysis with our data. We

conduct this analysis in Appendix E, where we search for transformations that yield, for

a given value for C, minimal and maximal coefficient values for either our continuous or

our discrete measure. The results show no clear evidence for violations of Assumption 2.

Nevertheless, these worst-case analyses do indicate that continuous measures of satisfaction

are generally more susceptible to sign reversals than discrete scales.

4 Systematic Evidence from WellBase

Subjective wellbeing is becoming increasingly central to policy. Among constructs measured

using ordered response scales, it also is the main focus of methodological critiques. Drawing

on our replication database, WellBase, this section provides the first systematic assessment

of the robustness of the empirical economics of subjective wellbeing. WellBase includes 73

papers, 1,610 regressions and 28,522 coefficients.

We use these replications to quantify three kinds of risks that can arise when analysts

assume the response scale to be linear: (i) the risk that a coefficient’s sign changes after a

positive monotonic transformation of the scale, (ii) the risk that its statistical significance

changes, and (iii) the extent to which such transformations can alter the relative magnitudes

of point estimates. Because the same Likert-style measurement issues may affect other

constructs in economics, we also benchmark wellbeing against scales for, among others, risk,

trust and political preferences. There, we reproduce 23,104 coefficients across 16 papers.

4.1 Data

Our goal was to reproduce the universe of empirical research on subjective wellbeing pub-

lished in top economics journals. We had three inclusion criteria. First, we only included

articles published in economics journals ranked among the Top 30 on RePEc (as of June

2022), which typically enforce data and code sharing, making reproduction more feasible.

Second, we only included papers published between January 2010 and May 2025. Third, we

focus on papers that use a cognitive measure of subjective wellbeing as dependent variable

in an individual-level analysis. Our search, conducted via Google Scholar, was based on

the following keywords: “Life Satisfaction”, “Cantril Ladder”, “Subjective well-being”, and

“Subjective wellbeing”. The first two capture the most common cognitive wellbeing scales,

while we added the latter two to capture any papers using less frequent cognitive wellbeing

measures. See Figure 4 for a summary of our selection process.
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Figure 4: Selection Process for WellBase.

Identification

Records identified through
database search: n = 473

Records removed before
screening :
Retracted (n = 1)

Screening

Records screened: n = 472

Records excluded:

• No SWB scale in
empirical analysis
(n = 351)

• SWB not the
dependent variable
(n = 20)

• Empirical analysis
not at the individual
level (n = 4)

Records assessed for repro-
duction: n = 97

Records excluded:

• Missing replication
package or
protected data
(n = 24)

Included

Papers reproduced and in-
cluded in WellBase: n = 73

Note: PRISMA (Page et al. 2021) flowchart summarising our selection process to produce WellBase.

In total, 97 articles were eligible for inclusion. Because of missing replication files or pro-

tected data, we reproduced 73 of these articles. Among these, we successfully reproduced all

of the 1,610 relevant regressions in both the main manuscripts and any associated appendices

(printed or online). Less than 2% of these regressions (spread across six articles) were not

using a linear estimator, but were using an ordered probit approach instead. Additionally,

3% percent of regressions (across two papers) were estimated using probit-adjusted OLS. To

make these regressions comparable and to apply the methods of Section 2, we reproduced

these regressions using OLS. In all such cases, the results, in terms of sign and statistical

significance, remained the same. Similarly, about 2% of the regressions (spread across three

articles) used a binary dummy for high wellbeing as dependent variable. We re-estimated

these regressions using the underlying full versions of the wellbeing measure. Again, the

results of these estimations remained the same.

Our replication effort yielded two categories of estimates: (1) published coefficients that

form the core of each paper’s analysis and (2) unpublished coefficients that typically serve

as control variables mentioned only in table/figure notes. In total, we replicated 5,322

published estimates and 23,200 unpublished estimates. Table A1 provides a complete list of

all reproduced articles, along with a number of details such as the type of wellbeing scale

used in the empirical analysis.

Table 1 provides an overview of the characteristics of the replicated estimates. About 6%

of these estimates can be found directly in the published manuscripts. An additional 12%

are reported in the appendices. The majority, constituting 81%, are coefficients on unprinted
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Table 1: Descriptive Statistics of WellBase at the estimate level.

Mean SD Min Max

About the wellbeing scales:
Number of response categories:
3-point scale 0.00 0 1
4-point scale 0.27 0 1
5-point scale 0.14 0 1
6-point scale 0.00 0 1
7-point scale 0.00 0 1
10-point scale 0.22 0 1
11-point scale 0.36 0 1
More than 11-point scale 0.00 0 1

Type of question:
Life Satisfaction 0.77 0 1
Cantril Ladder 0.05 0 1
Happiness Question 0.18 0 1

About the estimation samples:
Number of observations (logged) 9.98 2.17 4.08 14.72

About the econometric models:
Number of controls 34.07 30.02 1 191
Individual FE 0.14 0 1

About the independent variables:
Printed in manuscript 0.06 0 1
Printed in appendix 0.12 0 1
Not printed 0.81 0 1
Continuous variable 0.25 0 1
Time-varying variable 0.75 0 1
Two-stage least square 0.01 0 1
Individual-specific 0.91 0 1
Natural experiment, RCT, or policy reform 0.04 0 1
Macroeconomic indicator 0.04 0 1
Absolute t-statistics (logged) 0.45 1.53 -9.08 6.16

Total number of estimates/regressions/papers: 28,522/1,610/73

Note: These numbers refer to the sample of 28,522 estimates included in WellBase.

control variables not shown in the printed articles.13 About 4% relate to quasi-natural exper-

iments (e.g., centralisation reforms in Switzerland, the London Olympics, or RCTs), while

another 4% are macroeconomic factors (e.g., economic growth, inflation rates). Approxi-

mately 25% of coefficients relate to time-invariant characteristics (e.g., sex). Likewise, 25%

of estimates are based on a continuous covariate (e.g., income, age).

Appendix Table A2 focuses on the 27 papers in WellBase for which at least half of the

13Most of these unprinted control variables are standard sociodemographic characteristics that researchers
include in regressions, such as age, gender, race, religion, marital status, family size, employment status, job
characteristics, income, health, and childhood characteristics.
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printed regressions use a wellbeing scale as dependent variable. In these studies, the main

objective is to uncover the drivers of subjective wellbeing.14 For each of these, Table A2 sum-

marizes the hypotheses tested, and records the sign and significance of the main coefficients.

A large number of these studies find that economic resources (e.g. household income or

labour earnings) are associated with higher levels of reported wellbeing. Reported wellbeing

also systematically declines following major adverse life events, including physical violence

(Johnston et al. 2018), exposure to the Chernobyl disaster (Danzer and Danzer 2016), or

falling into poverty (Clark et al. 2016). Several papers examine policy or environmental

changes, such as centralisation reforms in Switzerland (Flèche 2021), income transparency

reforms in Norway (Perez-Truglia 2020), or the London Olympic Games (Dolan et al. 2019).

4.2 Results on Wellbeing Scales

This section presents a series of results systematically assessing how sensitive the WellBase

estimates are to the the assumption that scale use is linear. We do so with the help of the

cost function C defined in Section 2.4. Recall that when C = 0, this corresponds to the

near-universally adopted assumption that scale use is linear in underlying wellbeing. As C

increases, the transformed scale increasingly departs from this assumption. When C may

take on any value on the unit interval, the assumption of cardinality is replaced by a purely

ordinal interpretation.

4.2.1 On sign reversals: Documenting the risk of reversal

Figure 5 shows the share of point estimates whose sign can be reversed by applying some

positive monotonic transformation of the response scale with a cost of at most C.

We report three lines in Panel (A). The solid dark line shows the share of sign reversals

among all point estimates in WellBase. The remaining two lines present the same statistic

for printed estimates and for estimates of interest. Here, an estimate of interest refers to

estimates explicitly discussed in the text of the manuscript, and on which the conclusions

of the included papers are based. The lines in Panel (A) all exhibit a concave relationship

between the cost C and the percentage of sign reversals. About 60% of all replicated estimates

can be sign-reversed via at least one positive monotonic transformation of the wellbeing scale

when allowing for any cost C. However, focusing on “plausible” transformations only (i.e.

C < 0.15), the risk of sign reversals drops to 18% of all point estimates in WellBase. Printed

estimates and estimates of interest specifically exhibit even lower risks of sign reversal.

Panel (B) focuses only on estimates of interest and displays a further breakdown by

estimates’ original level of statistical significance. There is clear gradient between the original

level of significance and the possibility of sign reversal: the less significant an estimate at

14In the remaining papers in WellBase, wellbeing is not the primary outcome of interest.
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Figure 5: Cumulative sign-reversal percentages for different values of C in WellBase.

Panel (A) Panel (B)

Notes: Most coefficients signs in published wellbeing research are robust to plausible departures from
linear scale use. The figure shows the cumulative shares of coefficients included inWellBase for which their
sign can be reversed by some positive monotonic transformation of the response scale with at most cost
C. The case of C = 0 corresponds to assuming that scale-use is linear. When C may take on any value on
the unit interval, shown on the far right of the graphs, any monotonic transformation of the original scale
is permissible and the assumption of cardinality is replaced by a purely ordinal interpretation. Based on
the scale-use evidence presented in Section 3, shaded regions indicate “plausible” (green), “conservatively
plausible” (yellow), and “implausible” (red) degrees of non-linearity. Panel (A) shows that at most 60%
of all replicated estimates can be sign-reversed by some positive monotonic transformation of the response
scale. This risk drops to 18% when restricting attention to “likely” transformations. Panel (B) shows
that it is harder to reverse the sign of coefficients that are originally significant at the 5% level or below.

C = 0, the greater the chance that there is at least one transformation changing its sign. Sign

reversals are virtually non-existent under any “plausible” transformation among coefficients

that meet a 5% significance threshold.

Appendix Table A2 restricts attention to studies whose main objective is to study the

determinants of subjective wellbeing. Its last two columns indicate whether a reversal is

possible and, if so, what cost C is required to produce such a reversal. About half of the

coefficients reported in Appendix Table A2 are reversible. However, the risk is again much

lower among the statistically significant coefficients (at the 5% level): about 33% of these

can be sign-reversed, and in 95% of cases doing so would require a cost C > 0.15.

Overall, these results indicate that although sign reversals are often possible in principle,

reversals under plausible (i.e C < 0.15) transformations are not. This is especially true for

results that were highly statistically significant in their original form.

4.2.2 On sign reversals: Predicting the risk of reversal

We now explore whether the risk of sign reversal can be predicted by observable features of

the research design. We estimate a linear probability model of the form:
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Revmpr = β0+β1 ln(#Observations)pr+β2Modelpr+β3Estimatempr+β4Xpr+εmpr, (3)

where the dependent variable, Revmpr, is a dummy equal to one if there exists at least

one positive monotonic transformation of the wellbeing scale capable of reversing the sign of

estimate m from regression r in paper p, and zero otherwise.15

The term ln(#Observations)pr gives the logged number of observations in each regression

r in each paper p. The vector Modelpr includes the logged number of control variables and

a dummy for regressions that include individual fixed-effects, reflecting practices through

which researchers attempt to limit omitted variable bias. The vector Estimatempr captures

characteristics specific to the covariate m. It includes dummies for whether the covariate is

continuous (as opposed to categorical or binary), time-varying, or instrumented via 2SLS.

It also includes a categorical variable classifying whether the covariate corresponds to an

individual socio-demographic characteristic (the reference category), a natural experiment

(e.g., policy reform or RCTs), a placebo, or a macroeconomic indicator. Finally, the vector

Xpr comprises control variables: a dummy indicating whether the wellbeing scale includes

at least seven categories, and a categorical variable differentiating among life satisfaction

questions, the Cantril Ladder, and happiness questions.

We estimate two versions of Equation (3): one without and one with the logged t-

statistic. We treat the t-statistic differently because, unlike the other variables, which reflect

researchers’ design choices, it is an outcome of those choices that is not directly controlled.

We include it to test whether the observed negative association between statistical signifi-

cance and reversal risk (Panel (B), Figure 5) continues to hold.

Conditional on the possibility of a sign reversal for a given estimate, we further estimate

the following via OLS:

Costmpr = β0+β1 ln(#Observations)pr+β2Modelpr+β3Estimatempr+β4Xpr+εmpr, (4)

Equation (4) mirrors Equation (3) but uses the minimum C needed for a sign reversal

as the dependent variable. Comparing Equations (3) and (4) enables us to assess whether

the probability of reversal and the ease of achieving it share common determinants. In

both analyses, we cluster standard errors at the regression–paper (r × p) level. Continuous

independent variables are standardised using their means and SDs reported in Table A1.

Table 2 reports predictors of reversal risk in Columns (1) and (2) and reversal costs in

15We also estimate a probit model to assess the robustness of our findings. Marginal effects are reported
in Table A3. Conclusions are the same.
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Table 2: Predictors of the Probability and Cost of Sign-reversal.

P(Sign-reversal) Cost of sign-reversal

(1) (2) (3) (4)

About the estimation sample:
Number of observations (logged) -0.105∗∗∗ 0.029∗∗∗ 0.016∗∗∗ -0.038∗∗∗

(0.007) (0.006) (0.003) (0.003)

About the econometric model:
Number of controls 0.019∗ 0.001 -0.009∗∗ -0.006

(0.008) (0.006) (0.003) (0.003)
Individual FE 0.084∗∗∗ 0.004 -0.045∗∗∗ -0.010

(0.021) (0.016) (0.009) (0.008)

About the independent variable:
Continuous variable -0.080∗∗∗ -0.034∗∗∗ -0.008 -0.002

(0.010) (0.008) (0.006) (0.005)
Time-varying variable -0.142∗∗∗ -0.074∗∗∗ 0.065∗∗∗ 0.038∗∗∗

(0.009) (0.007) (0.005) (0.004)
Two-stage least square -0.056 -0.012 0.049∗∗ 0.016

(0.033) (0.032) (0.018) (0.017)
Natural experiment -0.167∗∗∗ -0.090∗∗∗ 0.091∗∗∗ 0.034∗∗∗

(0.017) (0.014) (0.013) (0.009)
Macroeconomic indicator 0.145∗∗∗ -0.026 -0.009 0.024∗∗

(0.015) (0.014) (0.009) (0.008)
Absolute t-statistics (logged) -0.275∗∗∗ 0.187∗∗∗

(0.004) (0.002)

Observations 28,522 28,522 17,243 17,243
R2 0.163 0.411 0.105 0.512

Notes: The table shows the results from regressions assessing the risk and cost of sign reversal under
positive monotonic transformations of the wellbeing scale. Specifically, Columns (1) and (2) report coeffi-
cients from an OLS model where the dependent variable equals one if at least one transformation reverses
the sign of a coefficient m from a regression r reported in paper p. Conditional on a sign reversal being
possible, Columns (3) and (4) report coefficients from an OLS model where the dependent variable is
the minimum cost C required for reversal. All regressions control for a dummy indicating whether the
wellbeing scale includes at least seven response categories and for the type of well-being measure (life
satisfaction, Cantril Ladder, or happiness). Standard errors are clustered at the regression-paper level.
Statistical significance is denoted as follows: * p < 0.05, ** p < 0.01, *** p < 0.001.

Columns (3) and (4). We highlight three findings. First, the determinants of whether a re-

versal is possible and how costly it is are largely shared: variables that lower the probability

of reversal also increase the cost required to achieve a reversal. Second, the logged t-statistic

is the strongest predictor of robustness: estimates with originally larger t-statistics are sub-

stantially less prone to reversal and more costly to reverse. This variable alone explains

much of the variation, raising the R2 of the model from 17% to over 41% in Columns (1)

and (2) and from 11% to over 51% in Columns (3) and (4). Last, a covariate’s source of
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variation matters: keeping the logged t-statistics constant, the sign of estimates exploiting

exogenous sources of variation (e.g., natural experiments) are both less likely to reverse and

require larger departures from linearity.16

Overall, the risk and cost of sign reversal are not just random noise. They reflect iden-

tifiable features of research design, and are therefore within researchers’ control. Signs of

highly significant results are far more likely to persist across scale transformations.

4.2.3 On significance reversals: Documenting the risk of reversal

We now quantify the risk of significance reversals. To this end, we first divide all estimates

of interest in WellBase into two groups: those initially significant at the 5% level, and those

not significant at this level. For all estimates, we compute the maximum and minimum

attainable p-values under any monotonic transformation. We define significance reversals as

instances where some transformation of the wellbeing scale cause the maximum attainable

p-value for an originally significant estimate to exceed the 5% threshold, or conversely, where

the minimum attainable p-value for an originally non-significant estimate drops below this

threshold. Conditional on the possibility of a ‘significance reversal’, we then numerically

search for the transformation that produces this reversal with the smallest deviation from

linearity.

Figure 6 plots the share of significance reversal against the cost C. The solid black

curve traces this share for coefficients originally significant at the 5% level. The dotted

grey curve shows the corresponding share for originally insignificant coefficients crossing the

significance threshold. The relationship between the cost C and the probability of significance

reversals is, again, concave. The ‘hazard’ of gaining significance is always greater than that of

losing it: 60% of previously insignificant estimates can become significant with some positive

monotonic transformation of the response scale. Only 24% of significant coefficients can be

turned insignificant. Restricting attention to “plausible” transformations (C < 0.15) reduces

these figures to 30% and 8%, respectively. Panel (B) restricts attention to initially significant

coefficients. About 87% of coefficients with originally 0.01 < p ≤ 0.05 lose significance under

some “mild” (C < 0.15) transformation. In contrast, coefficients that were already highly

significant (p < 0.001) are almost immovable: 95% stay below a p-value of 0.05 under any

positive monotonic transformation.

These results mirror those for sign reversals: significance reversals are a real concern, but

their occurrence appears limited when restricting attention to “plausible” departures from

16Some robustness checks are given Appendix Table A3. There we re-estimate Columns (2) and (4) of
Table 2 while adding journal or paper fixed effects, employing a probit model instead of a linear probability
model as well as a linear Cragg hurdle model where we jointly model the occurrence and cost of reversibility.
Our conclusions are robust across these specifications.
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Figure 6: Significance-reversal shares for different values of C in WellBase.

Panel (A) Panel (B)

Notes: Cumulative shares of coefficients of interest included in WellBase for which ‘statistical significance’
can be reversed by at least one positive monotonic transformation of the response scale with at most cost
C. See notes of Figure 5 for more details about C and the shaded regions. Panel (A) shows that up to 24%
of originally significant estimates lose significance under at least one positive monotonic transformation,
while approximately 60% of originally insignificant coefficients can be rendered significant. Panel (B)
shows that originally highly significant coefficients (p < 0.001) are extremely robust, whereas marginally
significant ones (0.01 < p ≤ 0.05) are fragile even under “plausible” transformations.

linearity. This is especially true for highly significant estimates, which almost never become

insignificant regardless of the transformation considered. However, as is intuitive, estimates

just below the 5% threshold easily lose significance even under ‘mild’ transformations.

4.2.4 On relative magnitudes: The case of unemployment and income

Turning to relative magnitudes, we now focus on unemployment and the income–wellbeing

relationship. The latter is especially central to policy-oriented work, because income is used

as the numéraire in monetary valuations based on subjective wellbeing data (e.g. Dolan et al.

2019). Our analysis draws on the subset of nine studies in WellBase that simultaneously

include both unemployment and household income in their regressions. To facilitate com-

parability across studies, we standardize each study’s wellbeing variable to mean zero and

standard deviation one.

We first compute a paper-specific average point estimate for unemployment and for in-

come weighted by the inverse of the standard error of the estimates.17 The vertical markers

in Figure 7 present such point estimates under the assumption of linearity (i.e. C = 0).

Unemployment is indicated in blue. The red markers show income. On average, unemploy-

ment is associated with a decrease in wellbeing of roughly 0.39 standard deviations. A unit

increase in log income is, on average, associated with a 0.16 SD increase in wellbeing.

17The only exception is Carattini and Roesti (2025), who used three distinct datasets, where we treat each
dataset from their paper as a unique observation.

25

doi.org/10.5287/ora-vyq7o5eqb Wellbeing Research Centre, Oxford 2503 | Working Paper Series



Figure 7: Forest plot showing the sensitivity of relative estimate magnitudes to transfor-
mations of the wellbeing scale.

Notes: Standardised average point estimates for unemployment and the log of household income among
papers included in WellBase. Papers are ranked by the average effect size of the unemployment coefficient.
The overall average, weighted by the inverse of the standard error of the individual estimates (Borenstein
et al. 2010), is displayed at the bottom. Wellbeing scales are standardised (mean of zero and standard de-
viation of one). Grey bars indicate the possible range of point estimates after applying positive monotonic
transformations of the wellbeing scales. There are three shades of grey, with the darkest corresponding
to C < 0.15, the middle to 0.15 ≤ C < 0.30, and the lightest to 0.30 ≤ C.

The grey bars in Figure 7 show how these estimates may vary as we depart from linear

scale use. When taking the meta-analytic average across all studies, allowing for C < 0.15

(for C < 0.30), unemployment decreases wellbeing between 0.28 (0.19) and 0.45 (0.50) SDs.

A unit increase in log income is correspondingly associated with an average increase between

0.11 (0.04) and 0.17 (0.18) SDs. Thus, the magnitudes of estimates vary widely, even under

“plausible” transformations.

However, given that there is no natural absolute scale for wellbeing (linear or not), the

absolute magnitudes of coefficients are not entirely meaningful. Ratios of coefficients, in

contrast, do provide a meaningful relative measure. When interpreted as causal estimates,

such ratios can be interpreted as marginal rates of substitution (MRS) between two variables.

Figure 8 therefore shows ratios of the coefficient on unemployment to the coefficient on ln(HH

income) across different levels for C.18 Each grey line corresponds to a different paper. The

18For the computations to follow, we exclude regressions where the coefficient on income was reversible.
According to Proposition 3, coefficients are unbounded in such a case. We excluded four regressions on that
basis: one in Knabe et al. (2010) and three in Layard et al. (2014) (c.f. Figure 8).
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Figure 8: Ranges of unemployment-income ratios.

Notes: Ranges of marginal rate of substitution (MRS) between unemployment and log household income
by paper (grey) and their average (black) across values of C. See notes of Figure 5 for more details about
C and the shaded regions. Panel (A) plots the MRS between unemployment and log household income.
This reveals a wide range: from just positive to –18.25.

black line shows the average ratio across all papers. We observe that this mean MRS can

range from just positive to as low as –18.25. Under “likely” transformations, the ranges are

only slightly narrower, ranging from zero to -10.

Thus, although the risk of sign and significance reversals appeared relatively small un-

der “plausible” transformations of the wellbeing scale, the same cannot be said about the

magnitudes of estimates. In the case of unemployment and income, two key drivers of well-

being, both absolute and relative magnitudes turn out to be highly sensitive to even mild

departures from linearity.

4.3 Likert Scales for Attitudes, Preferences and Perceptions

Our focus has so far been on wellbeing scales. But these are not the only constructs in

economics measured using ordered response scales. Concepts such as risk aversion, trust, or

political preferences are also routinely captured with such scales, and are broadly accepted

within the discipline. To gauge whether concerns about the cardinal vs ordinal nature of

Likert-style measurement ought to be unique to wellbeing, we now compare the reversal risks

between these different types of measures.

To do so systematically, we screened every article that appeared between January 2010
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Figure 9: Comparing the risk of sign reversal between wellbeing scales and other Likert
scales in Top-five Economics journals.

Notes: Cumulative shares of coefficients for which the sign can be reversed by at least one positive
monotonic transformation of the response scale with at most cost C. The figure shows that the risk of
reversal is not unique to wellbeing. In many cases, results on constructs such as risk (56%), trust (58%),
political preferences (44%), and ‘other’ constructs (47%) are sign reversible.

and May 2025 in the five leading economics journals19 and retained those whose full text

contained the term “Likert scale” or whose title included at least one of the following ex-

pressions: “attitudes”, “risk aversion,” “risk preferences,” “trust,” or “preferences for”. This

search strategy is unlikely to cover all Likert-scale based research published in top-five eco-

nomics journals, but assembling a true census of all such published research is beyond the

scope of this study.

As shown in Figure A10, we reproduced 16 articles for a total of 511 regressions and 23,104

estimates (8.61% of which are printed coefficients). Of the included papers, three contained

contained Likert-scale measure of trust (Acemoglu et al. 2020; Algan and Cahuc 2010; Falk

et al. 2018), four contained a Likert-scale measure of political preferences (Kuziemko et al.

2015; Alesina et al. 2018; Jha and Shayo 2019; Dechezleprêtre et al. 2025), two contained

a Likert-scale measure of risk aversion (Dohmen et al. 2010; Jha and Shayo 2019), and

nine contained a Likert-scale measure of other concepts including hiring interest, optimism,

fear, political correctness attitudes, and work morale (Cohn et al. 2015; Jha and Shayo 2019;

Kessler et al. 2019; Exley and Kessler 2022; Spenkuch et al. 2023; Braghieri 2024; Engelmann

19We count the following journals as part of the ‘top five’: Quarterly Journal of Economics, American
Economic Review, Journal of Political Economy, Review of Economic Studies, Econometrica.
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et al. 2024; Englmaier et al. 2024; Gagnon et al. 2025).

Results are shown in Figure 9. There we compare the sign reversal risk for estimates

based on wellbeing scales published in top-five economics journals (solid line) with the cor-

responding risk for estimates based on other Likert scales. The risk of sign reversal for

wellbeing estimates in this subsample is around 41%. This is lower than that for risk (56%),

trust (58%), political preferences (44%), and other the ‘other’ concepts (47%).

Finally, to explore whether the risks of sign reversal vary across concepts, we also repli-

cated the analysis of Table 2. Appendix Figure A11 shows that the predictors of reversal

risk are similar across types of measures: most notably, larger t-statistics robustly reduce

reversal risk. Thus, neither the level nor the determinants of reversal risk are unique to

wellbeing. Any concept measured with Likert-type scales is similarly vulnerable.

5 Discussion

Economists increasingly rely on bounded survey scales to measure latent constructs like risk

preferences, trust, political attitudes, and wellbeing. Standard practice treats these scales as

cardinal measures, assuming without evidence that psychological distances between adjacent

response categories remain constant across the entire scale. Our theoretical framework for-

malizes when this assumption matters and introduces a cost function to quantify the minimal

deviation from linearity required to reverse the sign, to reverse significance, or to change the

relative magnitude of estimated coefficients.

We gathered original experimental data to assess how individuals use response scales.

Across a series of elicitation strategies, we find that respondents, on average, use such scales

in a way that mildly deviates from linearity. Our estimates imply a rough upper bound on

the cost of deviation from linearity of C = 0.15. We use this value as an empirical anchor

for judging the plausibility of reversals.

We then ask to what extent wellbeing research published in top-ranked economics jour-

nals depends on the linearity assumption. To do so, we constructed WellBase, a database

comprising the universe of replicable regressions using cognitive wellbeing as a dependent

variable in the top 30 economics journals between January 2010 and May 2025. For each

estimate, we assess whether its sign can be reversed by at least one positive monotonic

transformation of the wellbeing scale and, if so, compute the minimal cost of such a trans-

formation. Plausibility is defined based on the scale-use evidence we collected. We further

examine whether research practices exist that are systematically associated with a lower risk

of sign reversal. Finally, we use WellBase to document the rate of significance reversals and

changes in coefficient ratios under positive monotonic transformations.

The risk of sign reversal is concave in the cost of deviating from linearity. Plausible

29

doi.org/10.5287/ora-vyq7o5eqb Wellbeing Research Centre, Oxford 2503 | Working Paper Series



transformations of the wellbeing scale can reverse the sign of about 20% of the wellbeing

research published in top-ranked economics journals. If linearity is entirely abandoned, this

share increases to approximately 60%. Restricting attention to the subset of wellbeing studies

in top-five journals, the risk is lower: around 40% under a purely ordinal interpretation. The

corresponding values for our sample of non-wellbeing Likert scales lies between 44% and 58%.

Among wellbeing-based coefficients with p-values below 0.05 — the ones typically emphasised

in published texts — the risk is negligible if we consider plausible transformations only. More

generally, the risk of sign reversal is not random: it can be predicted by observable features

of the research design. One key finding is that estimates relying on arguably exogenous

variation — such as natural experiments or macroeconomic shocks — are systematically less

prone to reversals.

Regarding significance reversals, we again find a concave relationship: the marginal effect

of relaxing linearity on the risk of significance reversal diminishes with cost. If the linearity

assumption were fully abandoned, roughly 86% of the estimates originally significant at

the 1% level would remain robust at the 5% level. However, for estimates with p-values

between 0.05 and 0.01, the risk of significance reversal is much larger, even under empirically

‘plausible’ transformations of the wellbeing scale. Hence, the bar for statistical inference is

higher than in the absence of concerns over non-linear scale use.

To assess the sensitivity of coefficient magnitudes and ratios, we restrict the analysis to

papers that include both unemployment and income as covariates. Even small potential

deviations from linear scale-use substantially affect the absolute size of these coefficients and

easily alters their ratio – by an order of magnitude. Thus, while the direction of estimates

tends to be stable, their relative sizes are highly sensitive to scale assumptions.

Some of our conclusions are nevertheless encouraging. The overall risk of sign reversal is

limited under plausible deviations from linearity, and partially predictable based on research

design. Likewise, the risk of significance reversal is small for estimates with small original

p-values. But other conclusions are more concerning. First, our results are not unique

to wellbeing data: estimates based on other widely used Likert-type scales in economics,

such as trust, risk preferences, or political attitudes, face similar risks. Potentially non-

linear scale use is therefore a concern for a much broader segment of economic research

than is widely recognised. Second, the risk of significance reversal is high for estimates

with p-values between 0.05 and 0.01. Finally, estimated magnitudes and coefficient ratios

are highly unstable. Here, too, do minimal non-linearities in scale use suffice to reverse

researchers’ substantive conclusions.

These results have practical implications. It seems that researchers can keep current

survey instruments largely unchanged: discrete and continuous response formats yield similar

30

doi.org/10.5287/ora-vyq7o5eqb Wellbeing Research Centre, Oxford 2503 | Working Paper Series



regressions coefficients, and explicit instructions on how respondents should use response

scales appear to have negligible effects. What is needed, however, is a broader evidence-

base on scale use. Our own tests, while indicative, focus on a single type of wellbeing

scale and could not pin-down the precise functional form by which scale use departs from

linearity. Moreover, future work might fruitfully combine our analysis of how monotonic

transformations affect regression results with current work on correcting for interpersonal

differences in scale use (Prati and Senik 2025; Benjamin et al. 2023b). Further work may also

draw on the partial identification literature to, for instance, provide confidence regions for

identified coefficient ranges given some cost C (c.f. Imbens and Manski 2004; Tamer 2010).

For current practice, we believe it useful for analysts to routinely probe the robustness of

their headline results to monotonic transformations of their outcome variable. A contribution

of this paper – and of our Stata routines – is to render such tests more tractable.
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Appendix

A Proofs and derivations

A.1 Proof of Proposition 1, OLS case

A version of this proof originally appeared in Kaiser and Vendrik (2023). We here reproduce

a shorter version in our notation, which will be useful for later proofs.

Let lk be the real value we assign to the kth response category of the untransformed

variable ri, and let the labels assigned to each category of the transformed variable r̃i be

given by l̃k. Hence, for any transformation f , we have f(ri = lk) = l̃k. Now note that:

r̃i =
K∑
k=1

l̃k1(ri = k) =
K−1∑
k=1

(l̃k − l̃k+1)1(ri ≤ k) + l̃K

=
K−1∑
k=1

(l̃k − l̃k+1)dk,i + l̃K

Stacking over individuals, we write r̃ =
∑K−1

k=1 (l̃k − l̃k+1)dk + l̃KI. Now notice that:

β̂ = (X′X)−1X′r̃

= (X′X)−1X′

(
K−1∑
k=1

(l̃k − l̃k+1)dk + l̃KI

)

= (X′X)−1X′

(
K−1∑
k=1

(l̃k − l̃k+1)((X
′X)−1X′)−1β̂

(d)

k + l̃KI

)

=
K−1∑
k=1

(l̃k − l̃k+1)β̂
(d)

k + (X′X)−1X′l̃KI

Recall that the first element of β̂ records a constant. The second term in the last line

is therefore a vector with all but the first element equal to zero. Hence, for coefficient β̂m

associated with covariate Xim, we can write β̂m =
∑K−1

k=1 (l̃k − l̃k+1)β̂
(d)
km. Since l̃k − l̃k+1 < 0

for all positive monotonic transformations, if sgn(β̂
(d)
km) is constant across k, every positive

monotonic transformation of ri yields the same sign for β̂m. However, if sgn(β̂
(d)
km) ̸= sgn(β̂

(d)
k′m)

for at least one k and k′, then there will always be a choice of labels such that either l̃k− l̃k+1

or l̃k′ − l̃k′+1 is sufficiently large to switch the sign of β̂m (since either can be made arbitrarily

large without affecting the other).
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A.2 Proof of Proposition 2

From Equation 1 and Assumptions 1 and 2 we have:

β̂ = (X′X)−1X′r̃ = (X′X)−1X′s− (X′X)−1X′ζ

Given Assumption 1, (X′X)−1X′s is a consistent estimator of β. Given Assumption

2, (X′X)−1X′ζ is a consistent estimator of γ. Assumption 2 implies that sgn(βm) =

sgn(βm − γm). Thus, since sgn(β̂m) is a consistent estimator of sgn(βm − γm), sgn(β̂m)

is also a consistent estimator of sgn(βm). By satisfying the non-reversal condition, sgn(β̂m)

is invariant under all positive monotonic transformations. Thus, sgn(β̂m) is a consistent

estimator of sgn(βm) for all positive monotonic transformations of ri.

A.3 Proof of Proposition 3

We begin with the identity established in the proof of Proposition 1: β̂
(r̃)
m =

∑K−1
k=1 (l̃k −

l̃k+1)β̂
(d)
km. For any two variablesm and n, the ratio of their coefficients is: β̂

(r̃)
m

β̂
(r̃)
n

=
∑K−1

k=1 (l̃k−l̃k+1)β̂
(d)
km∑K−1

k=1 (l̃k−l̃k+1)β̂
(d)
kn

.

There are two cases, depending on whether the coefficient in the denominator is reversible.

Case 1: β̂
(r̃)
n is not reversible

If β̂
(r̃)
n is not reversible across all positive monotonic transformations, then by Proposition 1,

all β̂
(d)
kn share the same sign. First assume that all β̂

(d)
kn > 0. Let w̃k = −(l̃k − l̃k+1). Given

that l̃k − l̃k+1 < 0 for all positive monotonic transformations, we have w̃k > 0. Then:

β̂
(r̃)
m

β̂
(r̃)
n

=

∑K−1
k=1 w̃kβ̂

(d)
km∑K−1

k=1 w̃kβ̂
(d)
kn

=

∑K−1
k=1 w̃kβ̂

(d)
kn

β̂
(d)
km

β̂
(d)
kn∑K−1

k=1 w̃kβ̂
(d)
kn

=
1∑K−1

k=1 w̃kβ̂
(d)
kn

K−1∑
k=1

w̃kβ̂
(d)
kn

β̂
(d)
km

β̂
(d)
kn

=
K−1∑
k=1

w̃kβ̂
(d)
kn∑K−1

j=1 w̃jβ̂
(d)
jn

β̂
(d)
km

β̂
(d)
kn

=
K−1∑
k=1

αk
β̂
(d)
km

β̂
(d)
kn

Since w̃k > 0 and β̂
(d)
kn > 0 for all k (by assumption), we have αk > 0 for all k. Addi-

tionally,
∑K−1

k=1 αk = 1. Therefore, the ratio β̂
(r̃)
m /β̂

(r̃)
n is a convex combination of the ratios

β̂
(d)
km/β̂

(d)
kn , where the weights are given by αk ≡

w̃kβ̂
(d)
kn∑K−1

j=1 w̃j β̂
(d)
jn

. Thus, the ratio β̂
(r̃)
m /β̂

(r̃)
n must lie

between the minimum and maximum values of β̂
(d)
km/β̂

(d)
kn : mink

β̂
(d)
km

β̂
(d)
kn

< β̂
(r̃)
m

β̂
(r̃)
n

< maxk
β̂
(d)
km

β̂
(d)
kn

.

By choosing appropriate values for w̃k (which corresponds to choosing an appropriate

positive monotonic transformation), we can make the ratio β̂
(r̃)
m /β̂

(r̃)
n arbitrarily close to

either bound. For example, to approach the maximum value maxk
β̂
(d)
km

β̂
(d)
kn

, we could choose a

37

doi.org/10.5287/ora-vyq7o5eqb Wellbeing Research Centre, Oxford 2503 | Working Paper Series



transformation where w̃k is very large for the k that maximizes
β̂
(d)
km

β̂
(d)
kn

and very small for all

other values of k. Finally, when the signs of the β̂
(d)
kn are all negative, the same argument

applies, except that the inequalities are reversed due to the negative sign in the denominator.

However, the bounds remain the same.

Case 2: β̂
(r̃)
n is reversible

Now consider the case where β̂
(r̃)
n can be reversed by some positive monotonic transformation.

In that case, the ratio β̂
(r̃)
m

β̂
(r̃)
n

is not bounded. To see this, note that since β̂
(r̃)
n is reversible, we

can find a transformation such that β̂
(r̃)
n = ε for some arbitrarily small ε > 0. Depending on

the sign of β̂
(r̃)
m for that transformation, this will cause the ratio β̂

(r̃)
m

β̂
(r̃)
n

to be arbitrarily large

negative (for β̂
(r̃)
m < 0) or positive (for β̂

(r̃)
m ≥ 0). By the same argument, we can always find

another transformation such that β̂
(r̃)
n = ϵ for some arbitrarily small ϵ < 0, and obtain an

arbitrarily large positive (for β̂
(r̃)
m < 0) or large negative (for β̂

(r̃)
m ≥ 0) ratio.20.

A.4 Derivation of variance-covariance matrices

We here provide additional details for computing the variance-covariance matrix of estimated

coefficients under arbitrary monotonic transformations of the response scale.

For any monotonic transformation r̃i = f(ri), we show that the residuals from a regression

of r̃ on X can be expressed as a weighted combination of residuals from regressions of the

dichotomised variables dk. The residuals from the transformed regression are:

ẽ = r̃−Xβ̂
(r̃)
.

From the proof of Proposition 1 (Appendix A.1), we know that r̃ =
∑K−1

k=1 (l̃k− l̃k+1)dk+

l̃KI and β̂
(r̃)

=
∑K−1

k=1 (l̃k − l̃k+1)β̂
(d)

k + (X′X)−1X′l̃KI. Substituting these expressions:

ẽ =
K−1∑
k=1

(l̃k − l̃k+1)dk + l̃KI−X

(
K−1∑
k=1

(l̃k − l̃k+1)β̂
(d)

k + (X′X)−1X′l̃KI

)

=
K−1∑
k=1

(l̃k − l̃k+1)(dk −Xβ̂
(d)

k ) + l̃KI− l̃KX(X′X)−1X′I =
K−1∑
k=1

(l̃k − l̃k+1)edk.

The last equality follows because X(X′X)−1X′ is the projection matrix onto the column

space ofX. SinceX includes a constant, I lies in its column space, makingX(X′X)−1X′I = I.

20We exclude the degenerate case where β̂
(r̃)
m switches sign for exactly the same transformation as β̂

(r̃)
n .
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Using this decomposition, we can express the variance-covariance matrix estimator Ω̂ for

different error structures. For homoskedastic errors, the variance estimator is:

Ω̂vanilla = σ̂2 =
1

N −M

N∑
i=1

ẽ2i =
1

N −M

N∑
i=1

[
K−1∑
k=1

(l̃k − l̃k+1)edk,i

]2
,

where N is the number of observations and M is the number of regressors, and edk,i is the

residual for observation i from the regression of dki on X.

For the Huber-White heteroskedasticity-robust variance estimator we get:

Ω̂robust =
N∑
i=1

xix
′
iẽ

2
i =

N∑
i=1

xix
′
i

[
K−1∑
k=1

(l̃k − l̃k+1)edk,i

]2
.

Finally, for G clusters, the clustered variance estimator is:

Ω̂clustered =
G∑
g=1

(∑
i∈g

xi

K−1∑
k=1

(l̃k − l̃k+1)edk,i

)(∑
i∈g

xi

K−1∑
k=1

(l̃k − l̃k+1)edk,i

)′

.

A.5 Derivation of maxVar(∆l̃)

We here show that maxVar(∆l̃) = K−2
(K−1)2

(lK − l1)
2. Let differences between adjacent labels

be given by dk ≡ l̃k+1 − l̃k for k = 1, ..., K − 1. The variance of these differences is given by

Var(∆l̃) = 1
K−1

∑K−1
k=1 (dk− d̄)2, where d̄ = 1

K−1

∑K−1
k=1 dk =

lK−l1
K−1

is the mean difference. Now

note that the variance is maximised when these differences are as spread out as possible.

Given the constraint that all differences must be positive (our Monotonicity constraint)

and sum to L = lK − l1 (our Normalisation constraint), the maximum variance occurs

when one difference approaches L and all other K−2 differences approach 0. The maximum

variance is then given by maxVar(∆l̃) = 1
K−1

[
(L− d̄)2 + (K − 2)(0− d̄)2

]
. Substituting

d̄ = L
K−1

, we obtain:

maxVar(∆l̃) =
1

K − 1

[(
L− L

K − 1

)2

+ (K − 2)

(
L

K − 1

)2
]

=
1

K − 1

[
L2

(
K − 2

K − 1

)2

+ (K − 2)
L2

(K − 1)2

]

=
L2

(K − 1)3
[
(K − 2)2 + (K − 2)

]
=
L2(K − 2)(K − 1)

(K − 1)3
=

K − 2

(K − 1)2
(lK − l1)

2
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B Representation Theorem for Plausibility Measures

Here, we postulate (and motivate) a set of desiderata, or ‘axioms’, that any ‘plausibility

measure’ of deviations from linear scale-use should satisfy. We derive a representation theo-

rem to characterise the class of functions that satisfies these axioms. As we then show, our

cost function of the main text is a member of this class. The specific cost function we use,

setting α = 2, further has the useful property of being linearly homogenous.

B.1 Theorem

Let ∆k ≡ l̃k+1 − l̃k. To simplify notation, we only consider the case where
∑K−1

k ∆k = 1,

or, equivalently, where l̃K − l̃1 = 1. This restriction to the unit interval is without loss of

generality, as any monotonic transformation can be normalised to this domain and range.

Proposition A1 (Representation Theorem for Plausibility Measures). Any plausibility mea-

sure Π : D → [0, 1] satisfying Axioms 1-5 can be represented with the form:

Π(∆) = h

( ∑K−1
k=1 ψ(∆k)

max∆′∈D
∑K−1

k=1 ψ(∆
′
k)

)
where:

• ψ : R+ → R is continuous and strictly convex with unique minimum at ∆k = 1/(K−1)

• h : [0, 1] → [0, 1] is a continuous and increasing function with h(0) = 0 and h(1) = 1

• D is the set of all valid gap distributions:

D =
{
∆ ∈ RK−1 : ∆k ≥ 0 for all k, and

∑K−1
k=1 ∆k = 1

}
.

B.2 Axioms

We postulate 5 desiderata, or ‘axioms’, for any plausibility measure.

Axiom 1 (Normalisation).

• min∆∈D Π(∆) = 0 if ∆k =
1

K−1
for all k (uniform gaps)

• max∆∈D Π(∆) = 1 if ∆k = 1 for some k and ∆′
k = 0 for all other k′ ̸= k (single-jump

distributions)
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Motivation: It is convenient to know the range of our plausibility measure. The measure

should be at its minimum for linear scale-use. Single-jump scale-use is intuitively the most

extremely non-linear scale-use. The plausibility measure should be at its maximum there.

The minimum at uniformity and the maximum at single-jumps is also implied by Axiom 3.

Axiom 2 (Symmetry). Π is invariant under permutations of the indices. That is, for any

permutation σ of {1, 2, ..., K − 1}:

Π(∆1, ...,∆K−1) = Π(∆σ(1), ...,∆σ(K−1))

Motivation: We have no reason to treat gaps at different positions differently. A (say)

compression between categories 2-3 should be just as ‘implausible’ as the same compression

between categories 8-9. Any plausibility measure should thus be invariant to permutations

of the indices.

Axiom 3 (Strict Spread Sensitivity). If ∆ is a strict mean-preserving spread of ∆′, then

Π(∆) > Π(∆′).

Motivation: Greater dispersion in gaps represents greater departure from linearity. If one

distribution of gaps is a mean-preserving spread of another, it should have a higher plausibil-

ity cost. Uniform gaps are most plausible, while increasingly unequal gaps, some large, some

small, are less plausible. This axiom captures this intuition. As we will see, this axiom alone

implies that uniform gaps minimize the plausibility measure and single-jumps maximize it.

Axiom 4 (Continuity). Π is continuous.21

Motivation: Without continuity, arbitrarily small adjustments to scale interpretation could

produce discontinuous jumps in plausibility. Continuity is convenient for optimisation.

Axiom 5 (Monotonic Additive Separability). Π has the additive form:

Π(∆) = g

(
K−1∑
k=1

φk(∆k)

)

for some monotonic function g and some functions φk.

Motivation: Additivity ensures that one gap’s deviation does not affect the plausibility of

others. Monotonicity of g ensures consistency in how individual gap contributions aggregate.

21I.e. for any ϵ > 0, there exists δ > 0 s.t. when
√∑K−1

k=1 (∆k −∆′
k)

2 < δ, we have |Π(∆)−Π(∆′)| < ϵ.
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B.3 Proof

Step 1: Establish Identical Component Functions.

Axiom 5 states that Π(∆) = g
(∑K−1

k=1 φk(∆k)
)
. By Axiom 2 (Symmetry), for any permu-

tation σ, we have g
(∑K−1

k=1 φk(∆k)
)
= g

(∑K−1
k=1 φk(∆σ(k))

)
. Since g is monotonic (Axiom

5), we also need:
∑K−1

k=1 φk(∆k) =
∑K−1

k=1 φk(∆σ(k)). Now consider the specific case where

∆ = (x, y, 0, ..., 0) with x + y = 1. Under the transposition σ that swaps positions 1 and 2:

φ1(x) + φ2(y) = φ1(y) + φ2(x) ⇐⇒ φ1(x) − φ2(x) = φ1(y) − φ2(y). Since this holds for

all x, y, the difference φ1(x) − φ2(x) must be constant. By similar arguments for all pairs

of indices, all φk differ only by constants. Since adding constants to all φk can be absorbed

into g, we can without loss of generality set all φk = ψ for some common function ψ. We

thus get: Π(∆) = g
(∑K−1

k=1 ψ(∆k)
)
.

Step 2: Determine Convexity of ψ and Direction of g

Define the inner sum as S(∆) =
∑K−1

k=1 ψ(∆k). Axiom 3 states that for any mean-preserving

spread ∆ of ∆′, we have Π(∆) > Π(∆′). This implies that Π is strictly Schur-convex

(Marshall and Olkin 1979). Since Π(∆) = g(S(∆)) where g is monotonic (Axiom 5), and

Π is strictly Schur-convex, we know that S(∆) is strictly Schur-convex (if g is increasing)

or strictly Schur-concave (if g is decreasing). A sum of the form S(∆) =
∑K−1

k=1 ψ(∆k) is

strictly Schur-convex (Schur-concave) iff ψ is strictly convex (concave). Therefore, we have

two possible cases:

• Case A: ψ is strictly convex and g is strictly increasing

• Case B: ψ is strictly concave and g is strictly decreasing

These cases are duals: If (ψ, g) is a valid concave/decreasing pair, we can define ψ′ = −ψ
(strictly convex) and g′(x) = g(−x) (increasing), which represents the same plausibility

measure: Π(∆) = g(S(∆)) = g(
∑
ψ(∆k)) = g(−

∑
[−ψ(∆k)]) = g′(

∑
ψ′(∆k)).

Convention: We choose Case A without loss of generality. Therefore, ψ is strictly

convex and g is increasing.

Step 3: Note that g and ψ are continuous

By Axiom 4, Π is continuous. Since g is monotonic and therefore cannot smooth out discon-

tinuities, both S(∆) =
∑
ψ(∆k) and g must be continuous. Continuity of S(∆) requires

ψ(∆k) to be continuous.
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Step 4: Derive the Unique Minimum of ψ

By Axiom 1, Π(∆) = 0 if all ∆k = 1/(K − 1) and Π(∆) = 0 is the minimum of Π(∆). Let

u = (1/(K − 1), ..., 1/(K − 1)). Then: Π(u) = g ((K − 1) · ψ(1/(K − 1))) = 0.

From Step 2, we know that g is monotonically increasing. Since Π(∆) is minimised at

Π(u) = 0, it follows that the input to g must also be minimised at ∆ = u. Therefore,∑K−1
k=1 ψ(∆k) achieves a minimum when ∆k = 1/(K − 1) for all k. Because ψ(∆k) is

strictly convex, this minimum is unique.

Convention: We can set ψ(1/(K−1)) = 0 without loss of generality. If instead ψ(1/(K−
1)) = c for some constant c, we could define g′(x) = g(x − c(K − 1)) to achieve the same

plausibility measure. Setting the minimum to zero simplifies the notation.

Step 5: Show that Π is maximised at single-jump distributions

Since ψ is strictly convex (Step 2) the sum
∑K−1

k=1 ψ(∆k) over D = {∆ :
∑

∆k = 1,∆k ≥ 0}
is maximised at the extreme points of D. The single-jump distributions where ∆j = 1 for

some j and ∆k = 0 for k ̸= j are the extreme points of D. Finally, by symmetry, all single-

jump distributions yield the same maximum value M = ψ(1) + (K − 2) · ψ(0). Since g is

monotonically increasing, Π is also maximised at single-jump distributions.

Step 6: Normalize

In step 4, we established that min∆∈D S(∆) =
∑K−1

k=1 ψ(∆k) = 0. In step 5, we showed that∑K−1
k=1 ψ(∆k) obtains its maximum M = ψ(1) + (K − 2) · ψ(0) at single-jump distributions.

By Axiom 1 we must have: min∆∈D Π(∆) = g(0) = 0 and max∆∈D Π(∆) = g(M) = 1.

Therefore, g : [0,M ] → [0, 1], with g continuous (by step 3) and monotonically increasing

(by step 2). Define h : [0, 1] → [0, 1] by h(x) = g(M ·x). Then h is continuous and increasing,

with h(0) = g(0) = 0 and h(1) = g(M) = 1. Now, for any ∆: Π(∆) = g
(∑K−1

k=1 ψ(∆k)
)
=

g
(
M ·

∑K−1
k=1 ψ(∆k)

M

)
= h

(∑K−1
k=1 ψ(∆k)

M

)
. Therefore: Π(∆) = h

( ∑K−1
k=1 ψ(∆k)

max∆′∈D
∑K−1

k=1 ψ(∆′
k)

)
. This

completes the proof.

B.4 The Variance-Based Cost and Linear Homogeneity

A particularly attractive choice satisfying the restrictions of the representation theorem of

Proposition A1 is to set: ψ(x) = (x− 1/(K − 1))2 and h(x) =
√
x. This gives us:

Π(∆) =

√ ∑K−1
k=1 (∆k − 1/(K − 1))2

max∆′
∑K−1

k=1 (∆
′
k − 1/(K − 1))2

,
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which corresponds to the cost function used in the main part of the paper (with α = 2). To

see this, note that when
∑K−1

k=1 ∆k = 1, we obtain
∑K−1

k=1 (∆k−1/(K−1))2 = (K−1)·Var(∆).

The maximum value, in turn, is given by max∆′∈D
∑K−1

k=1 (∆
′
k−1/(K−1))2 = (K−2)/(K−1).

From Appendix A.5, we have maxVar(∆) = (K − 2)/(K − 1)2. We can therefore write

Π(∆) =
√

Var(∆)
maxVar(∆)

.

Usefully, this choice exhibits linear homogeneity. That is, for some new set of labels

satisfying ∆(λ) = λ∆+ (1− λ)u, where u = (1/(K − 1), ..., 1/(K − 1)), we obtain:

Π(∆(λ)) = λ · Π(∆)

To see this, consider the components of the interpolated distribution:

∆
(λ)
k = λ∆k + (1− λ) · 1

K − 1
⇐⇒ ∆

(λ)
k − 1

K − 1
= λ

(
∆k −

1

K − 1

)
⇐⇒

(
∆

(λ)
k − 1

K − 1

)2

= λ2
(
∆k −

1

K − 1

)2

Then, summing over all components and applying to the plausibility measure:

Π(∆(λ)) =

√
λ2
∑K−1

k=1 (∆k − 1/(K − 1))2

max∆′
∑K−1

k=1 (∆
′
k − 1/(K − 1))2

= λ · Π(∆)

Hence, under this choice, if we make a scale e.g. ‘50% more uniform’ (by mixing halfway

with uniform), the plausibility cost is exactly halved.

44

doi.org/10.5287/ora-vyq7o5eqb Wellbeing Research Centre, Oxford 2503 | Working Paper Series



C Supplemental Appendix

C.1 Proofs of Proposition 1 for FE, 2SLS, and continuous case

C.1.1 Fixed-effects case

Suppose we have panel data for respondents i and time period t. We collect the within-

person means across t = 1, 2, .., Ti of all covariates in X̄. The within-person means of r̃ and

dk are collected in ¯̃r and d̄k, respectively. The demeaned values of X, r̃, and dk are then

given by Ẋ = X− X̄, ˙̃r = r̃− ¯̃r, and ḋk = dk − d̄k, respectively. The fixed effects estimator

can then be written as β̂FE = (Ẋ′Ẋ)−1Ẋ′ ˙̃r and the result of Proposition 1 follows by the

same argument.

C.1.2 2-SLS Case

To also cover the IV case, it is sufficient to show that all but the first element of β̂IV are equal

to
∑K−1

k=1 (l̃k− l̃k+1)β̂
(d)

IV,k, where β̂IV and β̂
(d)

IV,k are, respectively, IV estimates of regressions of

r̃ and dk on X with excluded instruments Z. In the just-identified case, β̂IV = (Z′X)−1Z′r̃

and β̂
(d)

IV,k = (Z′X)−1Z′dk. Thus, analogous to the OLS case, we have:

β̂IV = (Z′X)−1Z′r̃ = (Z′X)−1Z′

(
K−1∑
k=1

(l̃k − l̃k+1)dk + l̃KI

)

= (Z′X)−1Z′

(
K−1∑
k=1

(l̃k − l̃k+1)((Z
′X)−1Z′)−1β̂

(d)

IV,k + l̃KI

)

=
K−1∑
k=1

(l̃k − l̃k+1)β̂
(d)

IV,k + (Z′X)−1Z′l̃KI

As in the OLS case, the term (Z′X)−1Z′l̃KI is just an IV estimate of a regression of the

constant term l̃KI. All but the first element will therefore be zero. Hence, as required, all

but the first element of β̂IV are equal to
∑K−1

k=1 (l̃k − l̃k+1)β̂
(d)

IV,k.

C.1.3 Continuous Case

In principle ri could be continuous. An analogous result to Proposition 1 holds in this case.

Proposition A2 (Non-reversal condition with continuous outcomes). Let ri be a continu-

ous variable with support [rmin, rmax] and let f : [rmin, rmax] → R be any continuously dif-

ferentiable, strictly increasing function (i.e., f ′(t) > 0 for all t ∈ [rmin, rmax]). Define the

transformed variable r̃i = f(ri). Then, the sign of the OLS coefficient β̂m on Xim in

r̃i = Xiβ̂ + ϵi,

45

doi.org/10.5287/ora-vyq7o5eqb Wellbeing Research Centre, Oxford 2503 | Working Paper Series



is invariant under all such transformations f iff the coefficient β̂dm(t) obtained from the re-

gression of the dichotomised variable 1{ri ≤ t} on Xi has same sign for every t ∈ [rmin, rmax].

Since f is continuously differentiable and strictly increasing, we can write

f(ri) = f(rmax)−
∫ rmax

ri

f ′(t) dt.

Noting that for any ri ∈ [rmin, rmax] we have∫ rmax

ri

f ′(t) dt =

∫ rmax

rmin

f ′(t)1{ri ≤ t} dt,

it follows that

f(ri) = f(rmax)−
∫ rmax

rmin

f ′(t)1{ri ≤ t} dt.

Stacking observations and regressing r̃i on Xi yields

β̂ = (X′X)−1X′r̃ = (X′X)−1X′
(
f(rmax)1−

∫ rmax

rmin

f ′(t)1{ri ≤ t} dt
)
.

Since f(rmax) is constant, it affects only the intercept. For the coefficient on Xim, we obtain,

analogous to the discrete case:

β̂m = −
∫ rmax

rmin

f ′(t) β̂dm(t) dt,

where β̂dm(t) is the coefficient on Xim from the regression of 1{ri ≤ t} on Xi. Because

f ′(t) > 0 for all t, coefficient β̂m is a weighted average (with a negative sign) of the β̂dm(t).

Thus, if β̂dm(t) has the same sign for every t ∈ [rmin, rmax], then the sign of β̂m is fixed

regardless of the choice of f . Conversely, if there is any interval of values for t where β̂dm(t)

takes a different sign, one may choose f so that the weights f ′(t) shift the overall sign of β̂m.

D Making C comparable across scales with varying

numbers of response options

We here provide a justification for setting α = 2 log10(K−1) in the cost function Cα(̃l) when

comparing transformations across scales with varying numbers of categories. We also show

why our standard cost function (i.e., setting α = 2) becomes problematic as the number of

labels increases.

Consider a continuous function f : [0, 1] → [0, 1] with which we plan to recode our depen-
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dent variable r. As before, this restriction to the unit interval is without loss of generality,

as (again) any monotonic transformation can be normalised to this domain and range. De-

pending on the number of response options K for r, we can think of this function as being

sampled at K equidistant points (resulting in K − 1 differences between adjacent points).

The pattern of differences between response options in turn approximates the derivative of

the function, scaled by the sampling interval. When we sample a continuous function at K

equidistant points, each difference can be expressed as:

di∆
˙̃lk = f(xi+1)− f(xi) ≈ f ′(xi) ·∆x = f ′(xi) ·

1

K − 1

In the context of our response scale transformation, these differences di correspond pre-

cisely to the differences between adjacent labels l̃k+1 − l̃k, where the sampling points xi

correspond to the normalised positions of the original labels lk in the interval [0, 1].

To see how the variance of differences scales with the number of points, we calculate:

Var(d) =
1

K − 1

K−1∑
i=1

(di − d̄)2

where d̄ is the mean difference:

d̄ =
1

K − 1

K−1∑
i=1

di =
f(1)− f(0)

K − 1
=

1

K − 1

Substituting our expressions for di and d̄:

Var(d) =
1

K − 1

K−1∑
i=1

(
f ′(xi) ·

1

K − 1
− 1

K − 1

)2

=
1

K − 1

K−1∑
i=1

1

(K − 1)2
(f ′(xi)− 1)

2
=

1

(K − 1)2

K−1∑
i=1

1

(K − 1)
(f ′(xi)− 1)

2

As K increases, this sum approaches an integral:

1

(K − 1)2

K−1∑
i=1

1

(K − 1)
(f ′(xi)− 1)

2 ≈ 1

(K − 1)2

∫ 1

0

(f ′(x)− 1)
2
dx

Denote the variance of the derivative function over [0, 1] as σ2
f ′ . This is a fixed value for

a given f . Then:

Var(d) ≈
σ2
f ′

(K − 1)2
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Hence, the variance of differences scales by a factor of 1/(K − 1)2 for a fixed pattern

of non-linearity as the number of sampling points increases. Now we may notice that since

maxVar(d) =
(

1
K−1

− 1
(K−1)2

)
≈ 1

K−1
for large K, we have:

Var(d)

maxVar(d)
≈
σ2
f ′/(K − 1)2

1/(K − 1)
= σ2

f ′
1

(K − 1)

This ratio, therefore, scales approximately by a factor 1/(K − 1) for any fixed continuous

function as the sampling resolution (i.e., the number of response options) increases. We would

like to reduce this dependency on K in our cost function. Although completely eliminating

this dependency would require knowing the variance of the derivative of the transformation

function (σ2
f ′) in advance, we can mitigate it through our choice of exponent α in the cost

function. Specifically, we choose an exponent that makes
(

1
K−1

)1/α
constant:

α = 2 log10(K − 1)

With this adjustment, for any value of K we obtain
(

1
K−1

)1/(2 log10(K−1))
= 10−1/2 ≈ 0.316.

Notably, this adjustment works perfectly when the variance of the derivative of the trans-

formation σ2
f ′ equals 1, while for other values of σ2

f ′ the dependency on K is substantially

reduced but not eliminated.22 Thus, with this adjustment, the cost function will yield more

comparable values across scales with different numbers of response categories for the same

type of transformation. Moreover, for the commonly used 11-point scales, this approach

conveniently gives us α = 2 log10(10) = 2, which is the setting we use in the main text.

E Further evidence on γ

E.1 Worst-case estimates for γ when C > 0

Despite finding in Section 3.3 that γm ≈ 0 if scale use were linear (i.e., for C = 0), it remains

unclear how γm would behave for non-linear scale use (i.e. for C > 0). We here perform a

worst-case analysis on the potential influence and magnitude of γm in that case. We do so

in two steps:

1. Using our continuous measure and every covariate m, we search for a transformation

that yields a maximally positive and a maximally negative coefficient β̂
(r̃(cont)
m . Doing so

22To see this, we note the full expression: Cα ≈
(

σ2
f′

K−1

)1/(2 log10(K−1))

=
(
σ2
f ′

)1/(2 log10(K−1))

· 10−1/2

When σ2
f ′ = 1, the first term equals 11/(2 log10(K−1)) = 1. As in the unadjusted case for fixed α, for values

of σ2
f ′ > 1, our cost will decrease as K increases. In contrast, for σ2

f ′ < 1, it will increase as K increases.
However, this remaining dependency on is much weaker than in the case of fixed α.
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Figure A1: Worst-case evidence on γm when C > 0 (Prolific data)

Note: This figure displays worst-case scenarios for γm under non-linear scale use across several socioe-
conomic characteristics. The shaded regions represent the range of possible coefficient values achievable
through transformations at each cost C, with teal regions (γ+

m) showing maximum possible coefficients and
blue regions (γ−

m) showing minimum possible coefficients. Solid lines represent coefficients from continuous
measurements. Dashed lines show coefficients from discrete measurements.

may involve a reversal of coefficient signs compared to the original coefficient β̂
(r̃(disc)
m .

2. We then check what maximal/minimal coefficient we would have obtained with a trans-

formation of the same maximum cost if we only had our discrete 11-point variable. The

difference between coefficients β̂
(r̃(cont)
m and β̂

(r̃(disc)
m gives us a worst-case estimate of γm

under non-linear scale use.

Unfortunately, as discussed in Appendix D, it is not, in general, possible to make the

cost perfectly comparable across scales with vastly different numbers of response options.

In order to at least ensure some comparability, we cannot let α be fixed (c.f. Section 2.4.

Instead, we let α = 2log10(K − 1), as also derived in Appendix D. Thus, in what follows,

when we write “C” we mean Cα=2log10(K−1).

The results of this analysis, for several socio-economics variables, and across many values

for C, are shown in Figure A1. The shaded regions represent the range of possible coeffi-

cient values obtainable through transformations at a given cost C, with the upper region

(teal) corresponding to γ+m (i.e. where we maximise coefficients) and the lower region (blue)

corresponding to γ−m (i.e. where we minimise coefficients). The dashed black lines show the

coefficient from the discrete measurement, while the solid lines show the coefficient from the
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continuous measurement.

We do not generally see that a reversal is possible at a lower cost for the continuous

measure.23 However, as C approaches 1, it is almost universally the case that the range of

possible coefficient values is somewhat larger for the continuous measure than for the discrete

measure. As a consequence, the continuous measure leads to an additional reversal for the

case of unemployment (at C = 0.67), while no reversal for unemployment is possible in the

discrete case. These wider ranges for the continuous scale imply larger potential values of

γm under extreme non-linear scale use. However, we have little empirical evidence in favour

of such strongly non-linear scale use (c.f. Section 3)

E.2 Effect of number of response categories

The previous evidence suggests that the possible range of coefficient values will be wider

when using more response options. Intuitively, this is because the scope for within-category

heterogeneity will be larger when there are fewer response categories. We now extend our

analysis in two ways. First, we replicate the analysis on the same three additional datasets

as already discussed in Section 3.3. Second, we now also consider 3-point and 7-point scales,

alongside our original 11-point discrete scale. Given that we do not observe data on these

types of measures, we create these 3-point and 7-point scales by discretising our continuous

measurement at equidistant points.24

Figure A2 and Figures A5-A7 show the results. In line with the evidence of the previous

section, we broadly observe that increasing the number of response categories also increases

the possible spread of coefficient values at very high costs. As expected, we observe the

smallest coefficient spreads for three response categories, and the largest spreads for our

continuous measures. In turn, this again makes it generally more likely to reverse a coefficient

when more response categories are available; especially when allowing for large values for C.

As a further piece of evidence, and to show this more systematically, we analyze for all of

the variables and datasets discussed thus far, as well as pooling across datasets, how the mean

cost of reversal (and the share of feasible reversals), varies with the number of categories.

Since we do not observe all these n-point response scales, we construct them by discretising

our original continuous 0-10 measure by rounding using r
(nlabs)
i = round(r

(cont)
i , 10/(nlabs−

1)), where the second argument of round(., .) gives the units to which we round. Figure A3

shows our results. We generally observe the share of reversible coefficients (as indicated by

the solid line) to increase when the number of response options is low, stabilising at about

23The S-shaped pattern observed in Figure A1 reflects how our cost adjustment affects scales with different
numbers of categories. For small costs, our α adjustment decreases the cost parameter for the continuous
measurement relative to what a fixed α = 2 would yield, while for larger costs, it increases the relative cost.

24This yields {0, 5, 10} for the three-point scale and {0, 1.66, 3.33, 5, 6.66, 8.33, 10} for the seven-point scale.
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Figure A2: Coefficient spreads when C > 0 for different discretisations of r (Prolific data)

Note: This figure shows coefficient ranges for different variables across various scale discretisations (con-
tinuous, 11-point, 7-point, and 3-point scales) as the cost parameter C increases from 0 to 1. At high
costs and for each variable, continuous measurements typically show the largest possible range of values,
followed by 11-point, 7-point, and finally 3-point scales.

about 30 response options.25 Likewise, the mean cost of reversals tends to decline with more

response options. Overall, we observe that the share of reversible coefficients is about 20%-

points higher for continuous scales than for discrete 11-point scales. It now seems clear that

the share of reversible coefficient would be larger if satisfaction was measured on continuous

scales in the literature. We can get some sense of this by comparing the share of reversible

results in our replication effort when distinguishing between coefficients based on 10 or more

categories, with coefficients based on fewer categories. Panel (B) of Figure A3 shows the

results of this exercise. As expected, the share of reversible results is much larger in the case

of results with 10 or more categories.

E.3 Implications

Three conclusions emerge. First, if satisfaction were measured continuously, the share of

reversible results in the wellbeing literature would likely be somewhat higher than what

we observe with discrete scales. Second, however, such reversals would rely on extremely

well-targeted transformations that exploit a worst-case scenarios for within-category hetero-

geneity in more discrete measures. When we simply look at the magnitude of γm in the case

25With only 2 options, reversals are never possible and the conditional of Proposition 1 is trivially met.
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Figure A3: Consequences of increasing the number of available response categories.

Panel (A) Panel (B)

Note: Panel (A) illustrates how the number of available response categories affects both the share of
reversible coefficients (solid lines) and the mean cost of reversals (dashed lines) across different datasets
(as well as pooling across them). The share of reversible coefficients generally increases with the number
of response options until approximately 30 categories, after which it stabilizes. Conversely, the mean cost
of reversals tends to decline as more response options become available. With only 2 response options,
reversals are impossible as the conditional of Proposition 1 is trivially met in this case. This is reflected
by the zero values at the left edge of the graph. Panel (B) shows cumulative percentages of coefficients
for which the sign can be reversed by at least one positive monotonic transformation of the response scale
with at most cost C. See notes of Figure 5 for more details about C and the shaded regions.

of C = 0 (i.e. linear scale use), we find that γm is typically close to zero. This suggests

that the assumption of favourable within-category heterogeneity is reasonable for small C.

Third, researchers should be especially cautious when working with wellbeing data based

on few response categories (e.g., 3-point or 4-point scales). For these, it is not feasible to

conservatively assess the robustness of results against transformations of the response scale.
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Figure A4: Further evidence on γm when C = 0

Panel (A): Benjamin et al. Panel (B): Prati & Kaiser

Panel (C): LISS

Figure A5: Coeff. spreads for different discretisations of r (Benjamin et al. data)
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Figure A6: Coeff. spreads for different discretisations of r (Prati & Kaiser data)

Figure A7: Coeff. spreads for different discretisations of r (LISS data)
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F WellBase Details

Table A1: Description of Papers included in WellBase

Reference Measure of r
Response
options

Unemployment
estimates

Income
estimates

Comments

Banks et al. (2010) I am satisfied with my life 4 . . None
Clark and Senik (2010) Taking all things together, how happy would you say you are?

All things considered, how satisfied are you with your life as a whole nowadays?
How satisfied are you with how your life has turned out so far?

11
11
11

. ✓ None

Knabe et al. (2010) All things considered, how satisfied are you with your life as a whole these days? 11 ✓ ✓ None
Oswald and Wu (2011) In general, how satisfied are you with your life? 6 ✓ ✓ Income logged-transformed

and change of LFS refer-
ence category for Section
4.2.4

Bertrand (2013) Taken all together, how would say things are these days - would you say that you
are very happy, pretty happy or not too happy?

3 . . None

Vendrik (2013) All things considered, how satisfied are you with your life as a whole these days? 11 ✓ ✓ None
Ashraf et al. (2014) How satisfied are you with your life as a whole these days? 5 . . None
Frijters et al. (2014) Here is a scale from 0 to 10, where ”0” dissatisfied and ”10” means that you

are completely satisfied. Please enter the number which corresponds with how
satisfied or dissatisfied you are with the way life has turned out so far.

11 ✓ . None

Kesternich et al. (2014) On a scale from 0 to 10 where 0 means completely dissatisfied and 10 means
completely satisfied, how satisfied are you with your life?

11 . . None

Layard et al. (2014) Here is a scale from 0 to 10. On it, “0” means that you are completely dissatisfied
and “10” means that you are completely satisfied. Please tick the box with the
number above it which shows how dissatisfied or satisfied you are about the way
your life has turned out so far.

11 ✓ ✓ Income unstandardized for
Section 4.2.4

Bloom et al. (2015) How satisfied are you with your life as a whole these days? 7 . . None
Campante and
Yanagizawa-Drott (2015)

Taking all things together, would you say you are: not at all happy, not very
happy, quite happy, very happy?
How satisfied are you with your life as a whole these days?

4

10

. . Converted binary r to orig-
inal continuous r

Dinkelman and
Schulhofer-Wohl (2015)

Taking everything into account, how satisfied is the household with the way it
lives these days?

5 . . Original measure of r in
log; delogged for WellBase

Oswald et al. (2015) How would you rate your happiness at the moment? 6 . . Ordered probit replaced by
OLS

Aghion et al. (2016) Please imagine a ladder with steps numbered from zero at the bottom to 10 at
the top. The top of the ladder represents the best possible life for you and the
bottom of the ladder represents the worst possible life for you. On which step of
the ladder would you say you personally feel you stand at this time?
In general, how satisfied are you with your life?

11

4

. ✓ None

Clark et al. (2016) How satisfied are you with your life, all things considered? 11 ✓ . None
Danzer and Danzer (2016) To what extent are you satisfied with your life in general at the present time? 5 ✓ ✓ None
Gerritsen (2016) How dissatisfied or satisfied are you with your life overall? 7 . ✓ None
Glaeser et al. (2016) In general, how satisfied are you with your life? 4 . . Some regressions based on

propriety data missing

Continued on next page
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Reference Measure of r
Response
options

Unemployment
estimates

Income
estimates

Comments

Haushofer and Shapiro (2016) Taking all things together, would you say you are ‘very happy’ (1), ‘quite happy’
(2), ‘not very happy’ (3), or ‘not at all happy’ (4)?”
All things considered, how satisfied are you with your life as a whole these days?

4

11

. . None

Cheng et al. (2017) How satisfied are you with your life, all things considered?
How dissatisfied or satisfied are you with your life overall?
All things considered, how satisfied are you with your life in general?
All things considered, how satisfied are you with your life?

11
7
10
11

. . None

Blattman and Dercon (2018) Please imagine a ladder with steps numbered from zero at the bottom to 10 at
the top. The top of the ladder represents the best possible life for you and the
bottom of the ladder represents the worst possible life for you. On which step of
the ladder would you say you personally feel you stand at this time?

11 . . None

Blumenstock et al. (2018) All things considered, how satisfied are you with life as a whole? 11 . . None
De Neve et al. (2018) On the whole, are you very satisfied, fairly satisfied, not very satisfied, or not at

all satisfied with the life you lead?
Please imagine a ladder with steps numbered from zero at the bottom to 10 at
the top. The top of the ladder represents the best possible life for you and the
bottom of the ladder represents the worst possible life for you. On which step of
the ladder would you say you personally feel you stand at this time?
In general, how satisfied are you with your life?

4

11

4

. . None

Johnston et al. (2018) All things considered, how satisfied are you with your life? 11 ✓ ✓ Income logged-transformed
and change of LFS refer-
ence category for Section
4.2.4

Dolan et al. (2019) Overall, how satisfied are you with your life nowadays? 11 ✓ . None
Fisher and Zhu (2019) All things considered, how satisfied are you with your life? 11 . . None
Guriev and Treisman (2019) Please imagine a ladder with steps numbered from zero at the bottom to 10 at

the top. The top of the ladder represents the best possible life for you and the
bottom of the ladder represents the worst possible life for you. On which step of
the ladder would you say you personally feel you stand at this time?

11 . . None

Heffetz and Reeves (2019) In general, how satisfied are you with your life? 4 . . None
Odermatt and Stutzer (2019) How satisfied are you with your life, all things considered? 11 ✓ ✓ None
Tur-Prats (2019) How satisfied are you with your life as a whole these days? 10 . . Converted binary r to orig-

inal continuous r
Allcott et al. (2020) During the past 4 weeks, I was satisfied with my life 7 . . None
Blakeslee et al. (2020) All things considered, how satisfied are you with your life as a whole these days? 10 . . None
Haushofer et al. (2020) Taking all things together, would you say you are ‘very happy’ (1), ‘quite happy’

(2), ‘not very happy’ (3), or ‘not at all happy’ (4)?”
All things considered, how satisfied are you with your life as a whole these days?

4

11

. . None

Lee et al. (2020) All things considered, how satisfied are you with your life as a whole these days? 10 . ✓ None
Perez-Truglia (2020) Will you mostly describe yourself as: Very happy; Quite happy; Not particularly

happy; Not at all happy How satisfied are you with your life?
How satisfied are you with your life, all things considered?

4

11

✓ . Probit-adjusted OLS re-
placed by OLS

Singh and Masters (2020) How satisfied are you with your life, all things considered? 6 . . None
Aksoy and Tumen (2021) All things considered, I am satisfied with my life now 5 . . None

Continued on next page

56

doi.org/10.5287/ora-vyq7o5eqb Wellbeing Research Centre, Oxford 2503 | Working Paper Series

https://doi.org/10.1093/qje/qjw025
https://doi.org/10.1111/ecoj.12256
https://doi.org/10.1257/app.20170173
https://doi.org/10.1257/aer.20171676
https://doi.org/10.1162/REST_a_00697
https://doi.org/10.1111/ecoj.12478
https://doi.org/10.1016/j.jpubeco.2019.07.002
https://doi.org/10.1093/ej/uez011
https://doi.org/10.1257/jep.33.4.100
https://doi.org/10.1162/rest_a_00748
https://doi.org/10.1093/jeea/jvy005
https://doi.org/10.1162/rest_a_00784
https://doi.org/10.1257/aer.20190658
https://doi.org/10.1257/aer.20180976
https://doi.org/10.1016/j.jdeveco.2019.102416
https://doi.org/10.1086/705417
https://doi.org/10.1257/aer.20160256
https://doi.org/10.1016/j.jdeveco.2018.10.003
https://doi.org/10.1016/j.jdeveco.2020.102603


Table A1 – Continued from previous page

Reference Measure of r
Response
options

Unemployment
estimates

Income
estimates

Comments

Bessone et al. (2021) How happy are you today?
All things considered, how satisfied are you with your life as a whole?

5
10

. . None

Bryan et al. (2021) How would you describe your satisfaction with life?
Taking all things together, would you say you are

4
10

. .

Chen and Fang (2021) Please think about your life-as-a-whole. How satisfied are you with it? 5 . . None
Dalton et al. (2021) How satisfied are you with your life at this point? 10 . . None
Flèche (2021) In general, how satisfied are you with your life? 11 ✓ ✓ Regressions with Munici-

pality FE not reproduced
Probit-adjusted OLS re-
placed by OLS

Huang et al. (2021) Are you happy? 11 . . None
Kabátek and Ribar (2021) How satisfied are you with the life you lead at the moment? 11 . . Ordered logit replaced by

OLS
Levitt (2021) All things considered, how happy are you as a whole right now? 10 . . None
Li (2021) How happy are you?

How satisfied are you with your life as a whole?
5
5

. . None

Ajzenman et al. (2022) All things considered, I am satisfied with my life now 5 . . None
Binder and Makridis (2022) Please imagine a ladder with steps numbered from zero at the bottom to 10 at

the top. The top of the ladder represents the best possible life for you and the
bottom of the ladder represents the worst possible life for you. On which step of
the ladder would you say you personally feel you stand at this time?

11 ✓ . None

Dahl et al. (2022) Overall, how satisfied are you with your life? 11 . . None
Meier (2022) How satisfied are you with your life, all things considered? 11 . . None
Adhvaryu et al. (2023) Please imagine a ladder with steps numbered from zero at the bottom to 10 at

the top. The top of the ladder represents the best possible life for you and the
bottom of the ladder represents the worst possible life for you. On which step of
the ladder would you say you personally feel you stand at this time?

11 . . None

Bha et al. (2023) Please imagine a ladder with steps numbered from zero at the bottom to 10 at
the top. The top of the ladder represents the best possible life for you and the
bottom of the ladder represents the worst possible life for you. On which step of
the ladder would you say you personally feel you stand at this time?

11 . . None

Caria et al. (2023) Please imagine a ladder with steps numbered from zero at the bottom to 10 at
the top. The top of the ladder represents the best possible life for you and the
bottom of the ladder represents the worst possible life for you. On which step of
the ladder would you say you personally feel you stand at this time?

11 . . None

Coville et al. (2023) All things considered, how satisfied are you with your life as a whole these days?
Taking all things together, would you say you are:

10
4

. . None

Edmonds et al. (2023) Please imagine a ladder with steps numbered from zero at the bottom to 10 at
the top. The top of the ladder represents the best possible life for you and the
bottom of the ladder represents the worst possible life for you. On which step of
the ladder would you say you personally feel you stand at this time?

11 ✓ . None

Continued on next page

57

doi.org/10.5287/ora-vyq7o5eqb Wellbeing Research Centre, Oxford 2503 | Working Paper Series

https://doi.org/10.1093/qje/qjab013
https://doi.org/10.1093/qje/qjaa023
https://doi.org/10.1016/j.jdeveco.2021.102664
https://doi.org/10.1093/jeea/jvab007
https://doi.org/10.1162/rest_a_00894
https://doi.org/10.1162/rest_a_00921
https://doi.org/10.1162/rest_a_00921
https://doi.org/10.1093/restud/rdaa016
https://doi.org/10.1016/j.jdeveco.2021.102634
https://doi.org/10.1016/j.jdeveco.2022.102899
https://doi.org/10.1162/rest_a_00944
https://doi.org/10.1093/restud/rdab089
https://doi.org/10.1257/app.20200164
https://doi.org/10.1016/j.jpubeco.2023.104949
https://doi.org/10.1016/j.jdeveco.2023.103153
https://doi.org/10.1086/721655
https://doi.org/10.1162/rest_a_01379
https://doi.org/10.1162/rest_a_01074


Table A1 – Continued from previous page

Reference Measure of r
Response
options

Unemployment
estimates

Income
estimates

Comments

Gazeaud et al. (2023) Please imagine a ladder with steps numbered from zero at the bottom to 10 at
the top. The top of the ladder represents the best possible life for you and the
bottom of the ladder represents the worst possible life for you. On which step of
the ladder would you say you personally feel you stand at this time?

11 . . None

Liu and Netzer (2023) Taking all together, how would you say things are these days? Would you say that
you are rather happy, neither happy nor unhappy or rather unhappy?

3 . . Ordered probit replaced by
OLS

Sarmiento et al. (2023) How satisfied are you with your life, all things considered? 11 . . None
Sha (2023) How satisfied are you with your life as a whole? 5 . . None
Stango and Zinman (2023) How satisfied are you with your life as a whole these days? 100 . . None
Angelucci and Bennett (2024) I am satisfied with my life 10 . . None
Ciancio and Delavande (2024) How satisfied are you with your life, all things considered? 6 . . None
Clark and Zhu (2024) All things considered, how satisfied are you with your life? 11 . . None
Giacobino et al. (2024) Happiness question - wording not reported

Life satisfaction question - wording not reported
4
10

. . None

Grimm et al. (2024) Imagine for a moment that you are living the best life you can imagine living.
Now, imagine a situation where your life is as bad as it could possibly be. Let’s
consider a scale from 1 to 6. Suppose we say that the top of the scale (6) represents
the best possible life for you, and the bottom (1) represents the worst possible life
for you. Which step of the scale best represents your current personal situation?

6 . . None

Krekel et al. (2024) Overall, how satisfied are you with your life nowadays? 11 . . Ordered logit replaced by
OLS

Priebe et al. (2024) Life Satisfaction question - not reported 5 . . None
Riley (2024) Happiness question - not reported

Life satisfaction question - not reported
5
10

. . None

Vlassopoulos et al. (2024) Taking all things together, how happy are you these days?
How satisfied are you with your life as a whole these days?

11
11

. . None.

Bjorvatn et al. (2025) How happy are you with your life?
In your opinion, where are you on the ladder of life at the moment?

11
11

. . None

Carattini and Roesti (2025) All things considered, how satisfied are you with your life as a whole nowadays?
Ranges from 0 (extremely dissatisfied) to 10 (extremely satisfied)
Taking all things together, how happy would you say you are? - ranges from 0
(extremely unhappy) to 10 (extremely happy) In general, how satisfied are you
with your life?
How satisfied as a whole, 1 (not at all) to 4 (very satisfied)

11

11

4

✓ ✓ SHP, ESS and SOM sam-
ples analysed separately in
Section 4.2.4
Ordered probit replaced by
OLS

Courtemanche et al. (2025) In general, how satisfied are you with your life? 11 ✓ . Ordered probit replaced by
OLS

Note: This table lists all the papers included in WellBase.
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Table A2: Risk of sign reversal and main conclusions of WellBase

Author Test(s) of the paper Source Sign Sig. Reversal Cost

Clark and Senik (2010) Income Table 7 - Column 4 + 1% No .
Important to compare income Table 7 - Column 4 - 1% No .
Comparison direction: work colleagues Table 7 - Column 4 - 5% Yes 0.715
Comparison direction: family members Table 7 - Column 4 - 1% Yes 0.164
Comparison direction: others Table 7 - Column 4 - 1% Yes 0.138
Comparison direction: don’t compare Table 7 - Column 4 - 1% Yes 0.252

Knabe et al. (2010) Unemployment Table 5 - Column 3 - 1% No .
Oswald and Wu (2011) US States Fixed effects Table 2 - Column 4 Mix NS to 1% 44% 0.010 to

0.980
Bertrand (2013) Having a job Table 1 - Panel A + 1% No .

Being married Table 1 - Panel A + 1% No .
Having a job and being married Table 1 - Panel A - 5% No .
Having a job Table 1 - Panel B + 1% No .
Having kids Table 1 - Panel B + 1% No .
Having a job and having kids Table 1 - Panel B - 5% No .

Vendrik (2013) Current own income Table 1 - Column 5 + 1% No .
Past own income (one year) Table 1 - Column 5 - NS Yes 0.165
Past own income (two years) Table 1 - Column 5 - NS Yes 0.280
Past own income (three years) Table 1 - Column 5 + 10% Yes 0.564
Future own income (one year) Table 1 - Column 5 + 1% No .
Current reference income Table 1 - Column 5 - NS Yes 0.321
Past reference income (one year) Table 1 - Column 5 - 10% Yes 0.226
Future reference income (one year) Table 1 - Column 5 + NS Yes 0.053

Frijters et al. (2014) Wage Table 4 - Column 5 + 1% Yes 0.226
Employment Table 4 - Column 5 + 1% Yes 0.399
Unemployment Table 4 - Column 5 + NS Yes 0.084
Married Table 4 - Column 5 + 1% Yes 0.733
Poor Health Table 4 - Column 5 - 1% No .
Education Table 4 - Column 5 + NS Yes 0.278
Lagged satisfaction (age 46) Table 4 - Column 5 + 1% No .
Lagged satisfaction (age 42) Table 4 - Column 5 + 1% No .
Lagged satisfaction (age 33) Table 4 - Column 5 + 1% No .

Layard et al. (2014) Income Table 1 - Column 3 + 1% Yes 0.354
Education Table 1 - Column 3 + 1% Yes 0.049
Having a job Table 1 - Column 3 + 1% No .
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Author Test(s) of the paper Source Sign Sig. Reversal Cost

Good conduct Table 1 - Column 3 + 1% No .
Having a partner Table 1 - Column 3 + 1% Yes 0.856
Self-perceived health Table 1 - Column 3 + 1% Yes 0.786
Emotional health Table 1 - Column 3 + 1% No .
Female Table 1 - Column 3 + 1% Yes 0.15

Campante and Yanagizawa-Drott (2015) Ramadan hours Table 2 - Column 12 + 1% No .
Aghion et al. (2016) Job turnover rate Table 2 - Column 3 - Panel B + 5% Yes 0.342

Unemployment rate Table 2 - Column 3 - Panel B - 1% No .
Job creation rate Table 3 - Column 2 - Panel B + 1% Yes 0.575
Job destruction rate Table 3 - Column 2 - Panel B - 1% Yes 0.459

Clark et al. (2016) Incidence of poverty Table 2 - Column 1 - 1% Yes 0.593
Intensity of poverty Table 2 - Column 1 - 1% No .
0 to 1 years of poverty Table 3 - Column 1 - 1% No .
1 to 2 years of poverty Table 3 - Column 1 - 1% No .
2 to 3 years of poverty Table 3 - Column 1 - 1% No .
3 to 4 years of poverty Table 3 - Column 1 - 1% Yes 0.494
4 to 5 years of poverty Table 3 - Column 1 - 1% Yes 0.324
5 years of poverty or more Table 3 - Column 1 - 1% Yes 0.504

Danzer and Danzer (2016) Radiation Table 2 - Column 3 - 1% Yes 0.962
Gerritsen (2016) Income Table 1 - Column 1 + 1% No .

Hours of work Table 1 - Column 1 + 5% Yes 0.181
Hours of work squared Table 1 - Column 1 - 5% Yes 0.115

Glaeser et al. (2016) Population size Table 1 - Column 2 - 5% No .
Cheng et al. (2017) Age Figure 2 - Panel A - 1% No .

Age squared Figure 2 - Panel A + 1% No .
Age Figure 2 - Panel B - 1% No .
Age squared Figure 2 - Panel B + 1% No .
Age Figure 2 - Panel C - 1% No .
Age squared Figure 2 - Panel C + 1% No .
Age Figure 2 - Panel D - 1% No .
Age squared Figure 2 - Panel D + 1% No .

De Neve et al. (2018) Economic growth - World Sample Table 1 - Column 1 + 1% No .
Negative growth - World Sample Table 1 - Column 2 - 1% No .
Positive growth - World Sample Table 1 - Column 2 + NS Yes 0.482
Economic growth - European Sample Table 1 - Column 3 + 1% No .
Negative growth - European Sample Table 1 - Column 4 - 1% No .
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Author Test(s) of the paper Source Sign Sig. Reversal Cost

Positive growth - European Sample Table 1 - Column 4 + 5% No .
Economic growth - US Sample Table 1 - Column 5 + 1% No .
Negative growth - US Sample Table 1 - Column 6 - 1% No .
Positive growth - US Sample Table 1 - Column 6 + 1% No .

Johnston et al. (2018) Victim of physical violence - Women sample Table 3 - Column 1 - 1% No .
Victim of physical violence - Men sample Table 3 - Column 2 - 1% No .

Dolan et al. (2019) Olympic games in London Table 2 - Column 6 + 1% No .
Odermatt and Stutzer (2019) Widowhood (zero to one year) Table 2 - Column 2 - 1% No .

Widowhood (five to six year) Table 2 - Column 2 - 1% Yes 0.081
Unemployment (zero to one year) Table 2 - Column 4 - 1% No .
Unemployment (five to six year) Table 2 - Column 4 - 1% Yes 0.293
Disability (zero to one year) Table 2 - Column 6 - 1% Yes 0.509
Disability (five to six year) Table 2 - Column 6 - 1% Yes 0.182
Plant closure (zero to one year) Table 2 - Column 8 - 1% No .
Plant closure (five to six year) Table 2 - Column 8 - 1% Yes 0.198

Perez-Truglia (2020) Income Rank*2001–201*High Internet Table 3 - Column 4 + 1% No .
Income Rank*2001–2013*High Internet Table 3 - Column 6 + NS Yes 0.428

Flèche (2021) Centralization reforms Table 1 - Column 4 - 1% No .
Levitt (2021) All major life decisions after two months Table 5 - Column 2 - Row 1 + 1% No .

All major life decisions after two months Table 5 - Column 3 - Row 1 + NS Yes 0.087
All major life decisions after six months Table 5 - Column 5 - Row 1 + 1% No .
All major life decisions after six months Table 5 - Column 6 - Row 1 + 5% No .

Li (2021) First son * Sex ratio Table 3 - Column 1 - 5% No .
First son * Sex ratio Table 3 - Column 2 - 1% No .

Dahl et al. (2022) Post-reform*Immigrant Table 1 - Column 4 - Panel A - 1% No .
Post-reform*Immigrant Table 1 - Column 4 - Panel B + NS Yes 0.123

Sarmiento et al. (2023) LEZ introduction Table 8 - Column 1 + 1% Yes 0.310
Krekel et al. (2024) Volunteering in England’s NHS Table 3 - Column 2 + 1% No .
Carattini and Roesti (2025) Trust Table 1 - Column 1 + 1% No .
Courtemanche et al. (2025) Chain restaurant calorie posting laws Table 5 - Column 2 + 1% Yes 0.645

Note: This table lists the risk of sign reversal in all the papers included in WellBase for which at least half of the regressions printed uses a measure of cognitive
subjective wellbeing as dependent variable.
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G Additional Tables and Figures

Figure A8: Examples of different values for Cα=2 (with 7 response options)

Note: Each line represents a possible transformation from r to r̃ that satisfies a given cost C.

Figure A9: Cumulative sign-reversal percentages when using Theil index as cost function

Note: Cumulative percentages of coefficients for which the sign can be reversed by at least one
positive monotonic transformation of the response scale with at most cost C. When C = 0,
this corresponds to the standard linearity assumption on scale use. When C may take on any
value on the unit interval, shown on the far right of the graphs, any monotonic transformation
of the original scale is permissible and the assumption of cardinality is thereby replaced by a
purely ordinal interpretation.
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Figure A10: PRISMA Chart - Other Likert scales

Identification

Records identified through
database searching: n =
115

Records removed before
screening :
Comment of published
records (n = 2)

Screening

Records screened: n = 113

Records excluded:

• No Likert scale in
empirical analysis
(n = 64)

• Likert scale not the
dependent variable
(n = 14)

• Empirical analysis
not at the individual
level (n = 2)

Records assessed for repro-
duction: n = 33

Records excluded:

• Missing replication
package or
protected data
(n = 17)

Included

Papers reproduced and in-
cluded in analysis: n = 16

Note: This chart describes the selection of papers included in the Likert scale analysis.

Figure A11: Predictors of the Probability of Sign-reversal - Wellbeing and Likert scales

Notes: The figure shows the coefficients from linear probability models estimating the prob-
ability of sign reversal for estimates from well-being and Likert scale regressions published
in Top-5 Economics journals. Standard errors are clustered at the regression–paper level.
Whiskers represent 95% confidence intervals.
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Table A3: Predictors of the Probability and Cost of Sign-reversal: Robustness Checks

P(Sign-reversal) Cost of sign-reversal

(1) (2) (3) (4) (5) (6)

About the estimation sample:
Number of observations (logged) 0.026∗∗∗ 0.019∗∗ 0.048∗∗∗ -0.029∗∗∗ -0.026∗∗∗ -0.060∗∗∗

(0.006) (0.009) (0.006) (0.003) (0.004) (0.004)
About the econometric model:
Number of controls -0.001 -0.015 0.004 -0.004 -0.003 -0.009∗∗

(0.009) (0.014) (0.006) (0.003) (0.006) (0.004)
Individual FE 0.002 0.120∗∗∗ -0.000 -0.013∗ 0.077∗ -0.010

(0.013) (0.035) (0.015) (0.007) (0.041) (0.012)
About the independent variable:
Continuous variable -0.032∗∗∗ -0.030∗∗∗ -0.034∗∗∗ 0.006 0.018∗∗∗ 0.003

(0.007) (0.007) (0.007) (0.005) (0.005) (0.006)
Time-varying variable -0.078∗∗∗ -0.084∗∗∗ -0.068∗∗∗ 0.057∗∗∗ 0.066∗∗∗ 0.040∗∗∗

(0.008) (0.008) (0.007) (0.004) (0.004) (0.005)
Two-stage least squares -0.030 -0.051 -0.035 0.021 0.036∗∗ 0.011

(0.032) (0.031) (0.029) (0.018) (0.015) (0.021)
Natural experiment -0.058∗∗∗ -0.081∗∗∗ -0.037∗∗∗ 0.034∗∗∗ 0.050∗∗∗ 0.023∗∗

(0.014) (0.014) (0.010) (0.010) (0.010) (0.010)
Macroeconomic indicator -0.066∗∗∗ -0.036∗∗ -0.062∗∗∗ 0.037∗∗∗ 0.015 0.047∗∗∗

(0.015) (0.014) (0.012) (0.008) (0.010) (0.011)
Absolute t-statistics (logged)-0.285∗∗∗ -0.282∗∗∗ -0.315∗∗∗ 0.193∗∗∗ 0.196∗∗∗ 0.273∗∗∗

(0.004) (0.004) (0.004) (0.002) (0.003) (0.004)

Observations 28,522 28,522 28,522 17,243 17,243 28,522
Journal FE ✓ . . ✓ . .
Paper FE . ✓ . . ✓ .

Notes: Columns (3) reports marginal effects from probit models and Column (6) reports the coefficients of a linear Cragg
hurdle model where we assign a cost of reversal of zero for estimates that cannot be reversed. The other Columns report
OLS coefficients. All regressions control for a dummy equal to one for wellbeing scales including at least seven categories,
a categorical variable indicating whether the wellbeing measure is a life-satisfaction, Cantril Ladder or happiness question.
Standard errors are clustered at the regression-paper level. Statistical significance is denoted as follows: *p < 0.10, **p < 0.05,
and ***p < 0.01.
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H Additional tables on primary and secondary data

Table A4: Description of Primary Datasets

,

Short Name Country Time Measure of r Notes Reference

Prolific UK 2024 “Overall, how satisfied are you with
your life nowadays?”

The discrete measure has 11 response
options and mirrors the questions used
in the UK APS. Continuous mea-
sure constructed by asking respondents
about their location within a given dis-
crete response option. Sample obtained
via Prolific, with the nationally repre-
sentative option.

Kaiser and Lepinteur
(2025)

Benjamin et al. USA 2022 Discrete measure is Cantril’s ladder of
life (11 response options). Continuous
measure asked: “How satisfied you are
with your life?”

Continuous and discrete measure ob-
tained with two questions in the same
survey. Sample obtained via MTurk.

Benjamin et al.
(2023b)

Prati & Kaiser UK 2023-
2024

“All things considered, how satisfied are
you with your life nowadays?”

The discrete measure has 7 response op-
tions and mirrors the question used in
the UKHLS. Continuous and discrete
measure obtained with two questions in
the same survey. Sample obtained via
Prolific

Kaiser and Prati
(2025)

LISS NL 2011 “Taking all things together, how happy
would you say you are?”

The discrete measure has 10 response
options. In both measures, extremes
are labelled “completely unhappy”
and “completely happy”. Continu-
ous and discrete measures obtained via
two surveys administered one month
apart. Sample based on long-standing
https://www.lissdata.nl/ panel.

Studer (2012). Also
used in Kaiser and
Vendrik (2023)

Note: Description of datasets used in Section 3 and Appendix E.
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Table A5: Descriptive Statistics for Prolific data

N Mean SD Min Max

Satisfaction measure
Life satisfaction (discrete) 1238 6.28 2.07 0.00 10.00
LS (discrete unprompted) 621 6.38 1.97 0.00 10.00
LS (discrete linear prompt) 617 6.18 2.16 0.00 10.00
Life satisfaction (continuous) 1216 6.42 2.07 0.00 10.00
LS (continuous unprompted) 613 6.49 2.05 0.00 10.00
LS (continuous linear prompt) 603 6.35 2.08 0.20 10.00

Height & weight
Height(cm) 1185 171.13 10.37 129.69 198.12
Weight(kg) 1186 81.60 24.83 40.82 192.32

Slider values
Slider 1 606 1.07 0.84 0.00 8.60
Slider 2 606 1.95 1.07 0.00 8.60
Slider 3 606 2.85 1.20 0.40 8.60
Slider 4 606 3.86 1.16 0.70 8.70
Slider 5 606 4.94 1.10 1.20 8.90
Slider 6 606 6.03 1.18 1.30 9.30
Slider 7 606 7.05 1.24 1.30 10.00
Slider 8 606 7.98 1.05 4.30 10.00
Slider 9 606 8.94 0.69 6.60 10.00

Demographics
Ln(Income) 1144 7.30 0.79 4.61 9.39
Unemployed 1243 0.96 0.20 0.00 1.00
Age 1211 46.82 15.82 18.00 87.00
Age Squared 1211 2442.55 1482.51 324.00 7569.00
Has partner 1243 0.65 0.48 0.00 1.00
Higher education 1243 0.54 0.50 0.00 1.00
Non-White 1243 0.18 0.38 0.00 1.00
Female 1199 0.51 0.50 0.00 1.00
Household Size 1214 2.64 1.25 1.00 8.00
Has Children 1243 0.26 0.44 0.00 1.00
Homeowner 1243 0.64 0.48 0.00 1.00

Note: Descriptive statistics for main Prolific data used in Section 3 and Appendix E.
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Table A6: Descriptive Statistics for Additional Datasets

Benjamin et al. Prati & Kaiser LISS

N Mean SD Min Max N Mean SD Min Max N Mean SD Min Max

Wellbeing measure
Life sat. (disc.) 1494 6.69 2.28 0.00 10.00 1931 5.90 2.11 0.00 10.00
Life sat. (cont.) 1494 6.61 2.54 0.00 10.00 1928 6.60 2.05 0.00 10.00
Happiness (discrete) 8548 7.17 1.19 0.00 9.00
Happiness (continuous) 8548 6.71 1.50 0.00 9.00

Demographics
Ln(Income) 1492 10.92 0.78 8.52 13.17 1926 7.33 0.81 5.52 9.10 7801 7.83 0.52 4.61 12.10
Unemployed 1471 0.10 0.30 0.00 1.00 1926 0.09 0.29 0.00 1.00 8548 0.05 0.22 0.00 1.00
Age 1493 45.95 12.79 21.62 83.62 1915 41.19 13.03 18.00 82.00 8548 51.19 17.26 16.00 97.00
Age Squared 1493 2274 1272 467 6992 1915 1866 1183 324 6724 8548 2918 1717 256 9409
Has partner 1494 0.50 0.50 0.00 1.00 1948 0.75 0.44 0.00 1.00 8548 0.59 0.49 0.00 1.00
Higher education 1484 0.64 0.48 0.00 1.00 1948 0.56 0.50 0.00 1.00 8527 0.29 0.46 0.00 1.00
Non-White 1494 0.27 0.44 0.00 1.00 1948 0.12 0.33 0.00 1.00 8548 0.00 0.00 0.00 0.00
Female 1494 0.55 0.50 0.00 1.00 1925 0.50 0.50 0.00 1.00 8548 0.53 0.50 0.00 1.00
Household Size 1494 2.79 1.62 1.00 12.00 1909 2.96 1.31 1.00 9.00 8548 2.56 1.31 1.00 8.00
Has Children 1493 0.35 0.48 0.00 1.00 1948 0.48 0.50 0.00 1.00 8548 0.38 0.49 0.00 1.00
Homeowner 1494 0.00 0.00 0.00 0.00 1948 0.65 0.48 0.00 1.00 8548 0.65 0.48 0.00 1.00

Note: Descriptive statistics for data from Benjamin et al., Prati & Kaiser, and LISS used in Section 3 and Appendix E.
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